/* * Copyright (c) 2018-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLROIAlignLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/CLValidate.h" #include "arm_compute/core/CL/ICLArray.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "support/StringSupport.h" using namespace arm_compute::misc::shape_calculator; namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *rois, ITensorInfo *output, const ROIPoolingLayerInfo &pool_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, rois, output); ARM_COMPUTE_RETURN_ERROR_ON(rois->dimension(0) != 5); ARM_COMPUTE_RETURN_ERROR_ON(rois->num_dimensions() > 2); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F32, DataType::F16); ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NHWC, DataLayout::NCHW); ARM_COMPUTE_RETURN_ERROR_ON((pool_info.pooled_width() == 0) || (pool_info.pooled_height() == 0)); if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(compute_roi_align_shape(*input, *rois, pool_info), output->tensor_shape()); } if(is_data_type_quantized_asymmetric(input->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(rois, 1, DataType::QASYMM16); const UniformQuantizationInfo rois_qinfo = rois->quantization_info().uniform(); ARM_COMPUTE_RETURN_ERROR_ON(rois_qinfo.scale != 0.125f); ARM_COMPUTE_RETURN_ERROR_ON(rois_qinfo.offset != 0); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, rois); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *rois, ITensorInfo *output, const ROIPoolingLayerInfo &pool_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Output auto inizialitation if not yet initialized const TensorShape output_shape = compute_roi_align_shape(*input, *rois, pool_info); auto_init_if_empty((*output), output_shape, 1, input->data_type()); output->set_data_layout(input->data_layout()); // Configure kernel window constexpr unsigned int num_elems_processed_per_iteration = 1; Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); AccessWindowHorizontal input_access(input, input->valid_region().start(0), num_elems_processed_per_iteration); bool window_changed = update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace CLROIAlignLayerKernel::CLROIAlignLayerKernel() : _input(nullptr), _output(nullptr), _rois(nullptr), _pool_info(0, 0, 0.f) { } void CLROIAlignLayerKernel::configure(const ICLTensor *input, const ICLTensor *rois, ICLTensor *output, const ROIPoolingLayerInfo &pool_info) { configure(CLKernelLibrary::get().get_compile_context(), input, rois, output, pool_info); } void CLROIAlignLayerKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *rois, ICLTensor *output, const ROIPoolingLayerInfo &pool_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, rois); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), rois->info(), output->info(), pool_info)); // Configure kernel window auto win_config = validate_and_configure_window(input->info(), rois->info(), output->info(), pool_info); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); _input = input; _output = output; _rois = rois; _pool_info = pool_info; const DataType data_type = input->info()->data_type(); const bool is_qasymm = is_data_type_quantized_asymmetric(data_type); // Set build options CLBuildOptions build_opts; build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type)); build_opts.add_option("-DDATA_SIZE=" + get_data_size_from_data_type(input->info()->data_type())); build_opts.add_option("-DMAX_DIM_X=" + support::cpp11::to_string(_input->info()->dimension(get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH)))); build_opts.add_option("-DMAX_DIM_Y=" + support::cpp11::to_string(_input->info()->dimension(get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT)))); build_opts.add_option("-DMAX_DIM_Z=" + support::cpp11::to_string(_input->info()->dimension(get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::CHANNEL)))); build_opts.add_option("-DPOOLED_DIM_X=" + support::cpp11::to_string(pool_info.pooled_width())); build_opts.add_option("-DPOOLED_DIM_Y=" + support::cpp11::to_string(pool_info.pooled_height())); build_opts.add_option("-DSPATIAL_SCALE=" + float_to_string_with_full_precision(pool_info.spatial_scale())); build_opts.add_option_if(input->info()->data_layout() == DataLayout::NHWC, "-DNHWC"); build_opts.add_option_if(pool_info.sampling_ratio() > 0, "-DSAMPLING_RATIO=" + support::cpp11::to_string(pool_info.sampling_ratio())); if(is_qasymm) { const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform(); const UniformQuantizationInfo roisq_info = rois->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = output->info()->quantization_info().uniform(); build_opts.add_option("-DOFFSET_IN=" + float_to_string_with_full_precision(iq_info.offset)); build_opts.add_option("-DSCALE_IN=" + float_to_string_with_full_precision(iq_info.scale)); build_opts.add_option("-DOFFSET_ROIS=" + float_to_string_with_full_precision(roisq_info.offset)); build_opts.add_option("-DSCALE_ROIS=" + float_to_string_with_full_precision(roisq_info.scale)); build_opts.add_option("-DOFFSET_OUT=" + float_to_string_with_full_precision(oq_info.offset)); build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale)); } // Create kernel const std::string kernel_name = (is_qasymm) ? "roi_align_layer_quantized" : "roi_align_layer"; _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); ICLKernel::configure_internal(win_config.second); } Status CLROIAlignLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *rois, ITensorInfo *output, const ROIPoolingLayerInfo &pool_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, rois, output, pool_info)); return Status{}; } void CLROIAlignLayerKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); Window slice = window.first_slice_window_3D(); Window slice_rois = slice; // Parallelize spatially and across the fourth dimension of the output tensor (also across ROITensor) slice_rois.set_dimension_step(Window::DimX, _rois->info()->dimension(0)); slice.set(get_data_layout_dimension_index(_input->info()->data_layout(), DataLayoutDimension::CHANNEL), window[3]); // Set arguments unsigned int idx = 0; add_3D_tensor_argument(idx, _input, slice); add_2D_tensor_argument(idx, _rois, slice_rois); add_3D_tensor_argument(idx, _output, slice); add_argument(idx, _input->info()->strides_in_bytes()[3]); add_argument(idx, _output->info()->strides_in_bytes()[3]); enqueue(queue, *this, slice, lws_hint()); } } // namespace arm_compute