/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLPoolingLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/ICLKernel.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include using namespace arm_compute; namespace { // Internal window config info using CLPoolingConfig = std::pair; //num_elems_processed_per_iteration, border_size void auto_init(const ITensorInfo *input, ITensorInfo *output, unsigned int pooled_w, unsigned int pooled_h) { TensorShape output_shape{ input->tensor_shape() }; output_shape.set(0, pooled_w); output_shape.set(1, pooled_h); auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape)); } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG((is_data_type_quantized_asymmetric(input->data_type()) && pool_info.pool_type() == PoolingType::L2), "Unsupported combination of parameters!"); const bool is_global_pooling = pool_info.is_global_pooling(); const unsigned int pool_size_x = is_global_pooling ? input->tensor_shape().x() : pool_info.pool_size().width; const unsigned int pool_size_y = is_global_pooling ? input->tensor_shape().y() : pool_info.pool_size().height; ARM_COMPUTE_RETURN_ERROR_ON_MSG(!is_global_pooling && ((pool_info.pad_stride_info().pad().first >= pool_size_x) || (pool_info.pad_stride_info().pad().second >= pool_size_y)), "Invalid pool size and pool pad combination!"); // Checks performed when output is configured if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, output); unsigned int pooled_w = 0; unsigned int pooled_h = 0; std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0), input->dimension(1), pool_size_x, pool_size_y, pool_info.pad_stride_info()); ARM_COMPUTE_RETURN_ERROR_ON_MSG((output->dimension(0) != pooled_w) || (output->dimension(1) != pooled_h), "Invalid output pooling dimensions!"); } return Status{}; } std::tuple validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &pool_info) { int pool_pad_x = 0; int pool_pad_y = 0; int pool_stride_x = 0; int pool_stride_y = 0; unsigned int pooled_w = 0; unsigned int pooled_h = 0; int pool_size_x = pool_info.is_global_pooling() ? input->dimension(0) : pool_info.pool_size().width; int pool_size_y = pool_info.is_global_pooling() ? input->dimension(1) : pool_info.pool_size().height; const PadStrideInfo pad_stride_info = pool_info.pad_stride_info(); std::tie(pool_pad_x, pool_pad_y) = pad_stride_info.pad(); std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride(); ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Check output dimensions std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0), input->dimension(1), pool_size_x, pool_size_y, pad_stride_info); auto_init(input, output, pooled_w, pooled_h); BorderSize border_size = BorderSize(pool_pad_y, pool_pad_x); const DataType data_type = input->data_type(); const int input_width = input->dimension(0); const int input_height = input->dimension(1); // Change the number of elements processed per iteration // for pooling 3x3 with stride less equal than 3 const bool can_optimize = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3) && !is_data_type_quantized(data_type); const unsigned int num_elems_processed_per_iteration = can_optimize ? 4 : 1; const int num_elems_read_per_iteration = (num_elems_processed_per_iteration - 1) * pool_stride_x + pool_size_x; // Number of iterations in X dimension const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration; // Upper limit for the number of right/bottom border elements that are accessed const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_x + num_elems_read_per_iteration) - input_width; const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size_y) - input_height; border_size.right = std::max(upper_bound_w, pool_pad_x); border_size.bottom = std::max(upper_bound_h, pool_pad_y); Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration)); AccessWindowRectangle input_access(input, -pool_pad_x, -pool_pad_y, num_elems_read_per_iteration, pool_size_y, pool_stride_x * num_elems_processed_per_iteration, pool_stride_y); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); bool window_changed = update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_tuple(err, win, CLPoolingConfig(num_elems_processed_per_iteration, border_size)); } } // namespace CLPoolingLayerKernel::CLPoolingLayerKernel() : _input(nullptr), _output(nullptr), _pool_info(), _border_size(0), _num_elems_processed_per_iteration(1) { } BorderSize CLPoolingLayerKernel::border_size() const { return _border_size; } void CLPoolingLayerKernel::configure(const ICLTensor *input, ICLTensor *output, const PoolingLayerInfo &pool_info) { int pool_pad_x = 0; int pool_pad_y = 0; int pool_stride_x = 0; int pool_stride_y = 0; unsigned int pooled_w = 0; unsigned int pooled_h = 0; const PoolingType pool_type = pool_info.pool_type(); const int pool_size_x = pool_info.is_global_pooling() ? input->info()->dimension(0) : pool_info.pool_size().width; const int pool_size_y = pool_info.is_global_pooling() ? input->info()->dimension(1) : pool_info.pool_size().height; const PadStrideInfo pad_stride_info = pool_info.pad_stride_info(); const bool exclude_padding = pool_info.exclude_padding(); std::tie(pool_pad_x, pool_pad_y) = pad_stride_info.pad(); std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride(); ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Check output dimensions std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), pool_size_x, pool_size_y, pad_stride_info); auto_init(input->info(), output->info(), pooled_w, pooled_h); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info)); // Set instance variables _input = input; _output = output; _pool_info = pool_info; const GPUTarget gpu_target = get_arch_from_target(get_target()); const DataType data_type = input->info()->data_type(); // Set build options CLBuildOptions build_opts; build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type)); build_opts.add_option("-DPOOL_" + string_from_pooling_type(pool_type)); build_opts.add_option_if(is_data_type_fixed_point(data_type), "-DFIXED_POINT_POSITION=" + support::cpp11::to_string(input->info()->fixed_point_position())); build_opts.add_option("-DSTRIDE_X=" + support::cpp11::to_string(pool_stride_x)); if(pool_type != PoolingType::MAX) { build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING"); build_opts.add_option("-DMAX_WIDTH=" + support::cpp11::to_string(input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_x))); build_opts.add_option("-DMAX_HEIGHT=" + support::cpp11::to_string(input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_y))); build_opts.add_option("-DSTRIDE_Y=" + support::cpp11::to_string(pool_stride_y)); build_opts.add_option("-DPAD_X=" + support::cpp11::to_string(pool_pad_x)); build_opts.add_option("-DPAD_Y=" + support::cpp11::to_string(pool_pad_y)); } // Create kernel if((pool_size_x == 3) && (pool_size_y == 3) && !is_data_type_quantized_asymmetric(data_type)) { // Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenCL kernel where // each thread computes 4 output elements const bool is_pool3x3_stride_le3 = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3) && !is_data_type_fixed_point(data_type); std::string kernel_name = ((is_pool3x3_stride_le3) ? "pooling_layer_optimized_" : "pooling_layer_") + support::cpp11::to_string(pool_size_x); _kernel = static_cast(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options())); } else // Run general case { build_opts.add_option("-DPOOL_SIZE_X=" + support::cpp11::to_string(pool_size_x)); build_opts.add_option("-DPOOL_SIZE_Y=" + support::cpp11::to_string(pool_size_y)); build_opts.add_option_if(data_type == DataType::F16, "-DFP16"); std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized" : "pooling_layer_MxN"; _kernel = static_cast(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options())); } // Configure kernel window auto win_config = validate_and_configure_window(input->info(), output->info(), pool_info); ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config)); // Configure the local work size (hint) from the first two dimensions of the global work size. // On Bifrost, this works for up to 35x35xC filters, for which the pooling_layer_3_optimized // kernel is launched with gws=(9, 33, C). In any case, the hint will be ignored if it is // invalid (e.g. exceeds the maximum workgroup size that the kernel can be launched with). if(gpu_target == GPUTarget::BIFROST) { cl::NDRange gws = ICLKernel::gws_from_window(std::get<1>(win_config)); _lws_hint = cl::NDRange(gws[0], gws[1], 1); } ICLKernel::configure(std::get<1>(win_config)); CLPoolingConfig pooling_config = std::get<2>(win_config); _num_elems_processed_per_iteration = pooling_config.first; _border_size = pooling_config.second; // Set config_id for enabling LWS tuning _config_id = "pooling_layer_"; _config_id += lower_string(string_from_data_type(data_type)); _config_id += "_"; _config_id += support::cpp11::to_string(output->info()->dimension(0)); _config_id += "_"; _config_id += support::cpp11::to_string(output->info()->dimension(1)); } Status CLPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info)); ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get(), pool_info))); return Status{}; } void CLPoolingLayerKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); unsigned int pool_pad_x, pool_pad_y, pool_stride_x, pool_stride_y = 0; std::tie(pool_pad_x, pool_pad_y) = _pool_info.pad_stride_info().pad(); std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ); Window slice = window_collapsed.first_slice_window_3D(); do { // Upsample input by pool size Window in_slice(slice); in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - pool_pad_x, (in_slice.x().end() - pool_pad_x) * pool_stride_x, pool_stride_x * _num_elems_processed_per_iteration)); in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - pool_pad_y, (in_slice.y().end() - pool_pad_y) * pool_stride_y, pool_stride_y)); // Set inputs unsigned int idx = 0; add_3D_tensor_argument(idx, _input, in_slice); add_3D_tensor_argument(idx, _output, slice); enqueue(queue, *this, slice, _lws_hint); } while(window_collapsed.slide_window_slice_3D(slice)); }