/* * Copyright (c) 2016-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLPixelWiseMultiplicationKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/CLValidate.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/core/TensorInfo.h" #include "support/StringSupport.h" namespace arm_compute { namespace { constexpr unsigned int num_elems_processed_per_iteration = 16; Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info) { ARM_COMPUTE_UNUSED(overflow_policy); ARM_COMPUTE_UNUSED(rounding_policy); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(scale < 0, "Scale cannot be negative."); ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type())); const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured output if(output->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::S32, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::U8 && (input1->data_type() != DataType::U8 || input2->data_type() != DataType::U8), "Output can only be U8 if both inputs are U8"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QASYMM8 && (input1->data_type() != DataType::QASYMM8 || input2->data_type() != DataType::QASYMM8), "Output can only be QASYMM8 if both inputs are QASYMM8"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QASYMM8_SIGNED && (input1->data_type() != DataType::QASYMM8_SIGNED || input2->data_type() != DataType::QASYMM8_SIGNED), "Output can only be QASYMM8_SIGNED if both inputs are QASYMM8_SIGNED"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QSYMM16 && (input1->data_type() != DataType::QSYMM16 || input2->data_type() != DataType::QSYMM16), "Output can only be QSYMM16 if both inputs are QSYMM16"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::S32 && (input1->data_type() != DataType::QSYMM16 || input2->data_type() != DataType::QSYMM16), "Output can only be S32 if both inputs are QSYMM16"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized { set_shape_if_empty(*output, out_shape); if(input1->data_type() == DataType::S16 || input2->data_type() == DataType::S16) { set_format_if_unknown(*output, Format::S16); } else if(input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32) { set_format_if_unknown(*output, Format::F32); } else if(input1->data_type() == DataType::QASYMM8) { set_data_type_if_unknown(*output, DataType::QASYMM8); } else if(input1->data_type() == DataType::QASYMM8_SIGNED) { set_data_type_if_unknown(*output, DataType::QASYMM8_SIGNED); } else if(input1->data_type() == DataType::QSYMM16) { set_data_type_if_unknown(*output, DataType::QSYMM16); } } Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration)); Window win_input1 = win.broadcast_if_dimension_le_one(*input1); Window win_input2 = win.broadcast_if_dimension_le_one(*input2); AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration); AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); bool window_changed = update_window_and_padding(win_input1, input1_access) || update_window_and_padding(win_input2, input2_access) || update_window_and_padding(win, output_access); output_access.set_valid_region(win, valid_region); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace CLPixelWiseMultiplicationKernel::CLPixelWiseMultiplicationKernel() : _input1(nullptr), _input2(nullptr), _output(nullptr) { } void CLPixelWiseMultiplicationKernel::configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info) { configure(CLKernelLibrary::get().get_compile_context(), input1, input2, output, scale, overflow_policy, rounding_policy, act_info); } void CLPixelWiseMultiplicationKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1->info(), input2->info(), output->info(), scale, overflow_policy, rounding_policy, act_info)); // Configure kernel window auto win_config = validate_and_configure_window(input1->info(), input2->info(), output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); _input1 = input1; _input2 = input2; _output = output; int scale_int = -1; // Extract sign, exponent and mantissa int exponent = 0; float normalized_mantissa = std::frexp(scale, &exponent); // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15 // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14 // Moreover, it will be negative as we deal with 1/2^n if((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1)) { // Store the positive exponent. We know that we compute 1/2^n // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5 scale_int = std::abs(exponent - 1); } std::string acc_type; // Check if it has float inputs and output if(is_data_type_float(input1->info()->data_type()) || is_data_type_float(input2->info()->data_type())) { scale_int = -1; acc_type = (input1->info()->data_type() == DataType::F32 || input2->info()->data_type() == DataType::F32) ? "float" : "half"; } else { if(input1->info()->element_size() == 2 || input2->info()->element_size() == 2) { // Use 32-bit accumulator for 16-bit input acc_type = "int"; } else { // Use 16-bit accumulator for 8-bit input acc_type = "ushort"; } } const bool is_quantized = is_data_type_quantized(input1->info()->data_type()); // Set kernel build options std::string kernel_name = "pixelwise_mul"; CLBuildOptions build_opts; build_opts.add_option("-DDATA_TYPE_IN1=" + get_cl_type_from_data_type(input1->info()->data_type())); build_opts.add_option("-DDATA_TYPE_IN2=" + get_cl_type_from_data_type(input2->info()->data_type())); build_opts.add_option("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output->info()->data_type())); build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration)); if(is_quantized && (output->info()->data_type() != DataType::S32)) { const UniformQuantizationInfo iq1_info = input1->info()->quantization_info().uniform(); const UniformQuantizationInfo iq2_info = input2->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = output->info()->quantization_info().uniform(); build_opts.add_option_if(is_data_type_quantized_asymmetric(input1->info()->data_type()), "-DOFFSET_IN1=" + support::cpp11::to_string(iq1_info.offset)); build_opts.add_option_if(is_data_type_quantized_asymmetric(input2->info()->data_type()), "-DOFFSET_IN2=" + support::cpp11::to_string(iq2_info.offset)); build_opts.add_option_if(is_data_type_quantized_asymmetric(output->info()->data_type()), "-DOFFSET_OUT=" + support::cpp11::to_string(oq_info.offset)); build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq1_info.scale)); build_opts.add_option("-DSCALE_IN2=" + float_to_string_with_full_precision(iq2_info.scale)); build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale)); kernel_name += "_quantized"; } else { kernel_name += (scale_int >= 0) ? "_int" : "_float"; build_opts.add_option_if_else(overflow_policy == ConvertPolicy::WRAP || is_data_type_float(output->info()->data_type()), "-DWRAP", "-DSATURATE"); build_opts.add_option_if_else(rounding_policy == RoundingPolicy::TO_ZERO, "-DROUND=_rtz", "-DROUND=_rte"); build_opts.add_option("-DACC_DATA_TYPE=" + acc_type); if(act_info.enabled()) { build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation()))); build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(act_info.a())); build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(act_info.b())); } } // Create kernel _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); // Set scale argument unsigned int idx = 3 * num_arguments_per_3D_tensor(); // Skip the inputs and output parameters if(scale_int >= 0 && !is_quantized) { _kernel.setArg(idx++, scale_int); } else { _kernel.setArg(idx++, scale); } ICLKernel::configure_internal(win_config.second); } Status CLPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy, act_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(), input2->clone().get(), output->clone().get()).first); return Status{}; } void CLPixelWiseMultiplicationKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); const TensorShape &in_shape1 = _input1->info()->tensor_shape(); const TensorShape &in_shape2 = _input2->info()->tensor_shape(); const TensorShape &out_shape = _output->info()->tensor_shape(); bool can_collapse = true; if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1) { can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ); for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d) { can_collapse = (in_shape1[d] == in_shape2[d]); } } bool has_collapsed = false; Window collapsed = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window; const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1; const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2; Window slice = collapsed.first_slice_window_3D(); Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed); Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed); do { unsigned int idx = 0; add_3D_tensor_argument(idx, _input1, slice_input1); add_3D_tensor_argument(idx, _input2, slice_input2); add_3D_tensor_argument(idx, _output, slice); enqueue(queue, *this, slice, lws_hint()); ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1)); ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2)); } while(collapsed.slide_window_slice_3D(slice)); } BorderSize CLPixelWiseMultiplicationKernel::border_size() const { const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0)); const unsigned int border = std::min(num_elems_processed_per_iteration - 1U, replicateSize); return BorderSize{ 0, border, 0, 0 }; } namespace { constexpr unsigned int num_elems_processed_per_iteration_complex = 1; Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F32); const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type())); // Validate in case of configured output if(output->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } std::pair validate_and_configure_window_complex(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized const TensorInfo out_info(out_shape, input1->num_channels(), input1->data_type()); auto_init_if_empty(*output, out_info); Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration_complex)); Window win_input1 = win.broadcast_if_dimension_le_one(*input1); Window win_input2 = win.broadcast_if_dimension_le_one(*input2); AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration_complex); AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration_complex); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_complex); bool window_changed = update_window_and_padding(win_input1, input1_access) || update_window_and_padding(win_input2, input2_access) || update_window_and_padding(win, output_access); output_access.set_valid_region(win, valid_region); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace CLComplexPixelWiseMultiplicationKernel::CLComplexPixelWiseMultiplicationKernel() : _input1(nullptr), _input2(nullptr), _output(nullptr) { } void CLComplexPixelWiseMultiplicationKernel::configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info) { configure(CLKernelLibrary::get().get_compile_context(), input1, input2, output, act_info); } void CLComplexPixelWiseMultiplicationKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ActivationLayerInfo &act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1->info(), input2->info(), output->info(), act_info)); // Configure kernel window auto win_config = validate_and_configure_window_complex(input1->info(), input2->info(), output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); _input1 = input1; _input2 = input2; _output = output; CLBuildOptions build_opts; if(act_info.enabled()) { build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation()))); build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(act_info.a())); build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(act_info.b())); } // Create kernel _kernel = create_kernel(compile_context, "pixelwise_mul_complex", build_opts.options()); ICLKernel::configure_internal(win_config.second); } Status CLComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output, act_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_complex(input1->clone().get(), input2->clone().get(), output->clone().get()).first); return Status{}; } void CLComplexPixelWiseMultiplicationKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); const TensorShape &in_shape1 = _input1->info()->tensor_shape(); const TensorShape &in_shape2 = _input2->info()->tensor_shape(); const TensorShape &out_shape = _output->info()->tensor_shape(); bool can_collapse = true; if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1) { can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ); for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d) { can_collapse = (in_shape1[d] == in_shape2[d]); } } bool has_collapsed = false; Window collapsed = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window; const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1; const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2; Window slice = collapsed.first_slice_window_3D(); Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed); Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed); do { unsigned int idx = 0; add_3D_tensor_argument(idx, _input1, slice_input1); add_3D_tensor_argument(idx, _input2, slice_input2); add_3D_tensor_argument(idx, _output, slice); enqueue(queue, *this, slice, lws_hint()); ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1)); ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2)); } while(collapsed.slide_window_slice_3D(slice)); } BorderSize CLComplexPixelWiseMultiplicationKernel::border_size() const { const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0)); const unsigned int border = std::min(num_elems_processed_per_iteration_complex - 1U, replicateSize); return BorderSize{ 0, border, 0, 0 }; } } // namespace arm_compute