/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLPadLayerKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PaddingList &padding, PixelValue constant_value, PaddingMode mode) { ARM_COMPUTE_UNUSED(constant_value); ARM_COMPUTE_RETURN_ERROR_ON(padding.size() > input->num_dimensions()); if(mode == PaddingMode::REFLECT || mode == PaddingMode::SYMMETRIC) { ARM_COMPUTE_RETURN_ERROR_ON(padding.size() > 3); const auto is_reflect = static_cast(mode == PaddingMode::REFLECT); for(size_t i = 0; i < padding.size(); ++i) { ARM_COMPUTE_RETURN_ERROR_ON(padding.at(i).first > (input->dimension(i) - is_reflect)); ARM_COMPUTE_RETURN_ERROR_ON(padding.at(i).second > (input->dimension(i) - is_reflect)); } } if(output->total_size() > 0) { TensorShape padded_shape = misc::shape_calculator::compute_padded_shape(input->tensor_shape(), padding); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(output, input); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), padded_shape); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const PaddingList &padding, PixelValue constant_value, PaddingMode mode, unsigned int &num_elems_processed_per_iteration) { ARM_COMPUTE_UNUSED(constant_value, mode); const TensorShape padded_shape = misc::shape_calculator::compute_padded_shape(input->tensor_shape(), padding); auto_init_if_empty(*output, input->clone()->set_tensor_shape(padded_shape)); num_elems_processed_per_iteration = std::min(16U, 32U / static_cast(element_size_from_data_type(input->data_type()))); if(input->dimension(0) < num_elems_processed_per_iteration) { num_elems_processed_per_iteration = 1 << static_cast(std::log2(input->dimension(0))); } // Configure kernel window Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration)); const int input_start_x = mode == PaddingMode::CONSTANT ? -(padding.at(0).first % num_elems_processed_per_iteration) : 0; const int input_start_y = (mode == PaddingMode::CONSTANT && padding.size() > 1) ? -padding.at(1).first : 0; AccessWindowRectangle input_access(input, input_start_x, input_start_y, num_elems_processed_per_iteration, 1); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); const bool window_changed = update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace CLPadLayerKernel::CLPadLayerKernel() : _input(nullptr), _output(nullptr), _input_start_x(0), _input_start_y(0), _4d_enabled(false) { } void CLPadLayerKernel::configure(const ICLTensor *input, ICLTensor *output, const PaddingList &padding, PixelValue constant_value, PaddingMode mode) { // Perform validation step ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), padding, constant_value, mode)); _input = input; _output = output; _4d_enabled = (mode == PaddingMode::CONSTANT) && (padding.size() > 3); // Configure window unsigned int vec_size; auto win_config = validate_and_configure_window(input->info(), output->info(), padding, constant_value, mode, vec_size); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); ICLKernel::configure_internal(win_config.second); // Set build options std::string kernel_name = "pad_layer_"; const DataType &data_type = input->info()->data_type(); const unsigned int input_width = input->info()->dimension(0); const unsigned int input_height = input->info()->dimension(1); const unsigned int input_depth = input->info()->dimension(2); const unsigned int pad_x_before = padding.at(0).first; const unsigned int pad_y_before = padding.size() > 1 ? padding.at(1).first : 0; const unsigned int pad_z_before = padding.size() > 2 ? padding.at(2).first : 0; const unsigned int pad_right_start = input_width + pad_x_before; _input_start_x = mode == PaddingMode::CONSTANT ? -(pad_x_before % vec_size) : 0; _input_start_y = (mode == PaddingMode::CONSTANT && padding.size() > 1) ? -padding.at(1).first : 0; CLBuildOptions build_opts; build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type)); build_opts.add_option("-DSELECT_DT=" + get_cl_select_type_from_data_type(data_type)); build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(vec_size)); build_opts.add_option("-DPAD_X_BEFORE=" + support::cpp11::to_string(pad_x_before)); build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(input_width)); if(padding.size() > 1) { build_opts.add_option("-DPAD_Y_BEFORE=" + support::cpp11::to_string(pad_y_before)); build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(input_height)); if(padding.size() > 2) { build_opts.add_option("-DPAD_Z_BEFORE=" + support::cpp11::to_string(pad_z_before)); build_opts.add_option("-DSRC_DEPTH=" + support::cpp11::to_string(input_depth)); } } switch(mode) { case PaddingMode::CONSTANT: { kernel_name += "constant"; build_opts.add_option("-DCONST_VAL=" + string_from_pixel_value(constant_value, data_type)); build_opts.add_option_if(pad_x_before >= vec_size, "-DNUM_THREADS_TO_SKIP_X=" + support::cpp11::to_string(pad_x_before / vec_size)); if(_4d_enabled) { build_opts.add_option("-DPAD_W_BEFORE=" + support::cpp11::to_string(padding.at(3).first)); build_opts.add_option("-DSRC_BATCH=" + support::cpp11::to_string(input->info()->dimension(3))); } break; } case PaddingMode::SYMMETRIC: case PaddingMode::REFLECT: { kernel_name += "symmetric_reflect"; const auto is_reflect = static_cast(mode == PaddingMode::REFLECT); const unsigned int pad_x_before_remainder = pad_x_before % vec_size; const unsigned int pad_x_after_remainder = pad_right_start % vec_size; const unsigned int after_pad_fact_x = (2 * input_width + pad_x_before) - is_reflect; const unsigned int output_last_x = ceil_to_multiple(pad_right_start + padding.at(0).second, vec_size); build_opts.add_option("-DIS_REFLECT=" + support::cpp11::to_string(is_reflect)); build_opts.add_option("-DPAD_X_BEFORE_REMAINDER=" + support::cpp11::to_string(pad_x_before_remainder)); build_opts.add_option("-DPAD_X_AFTER_REMAINDER=" + support::cpp11::to_string(pad_x_after_remainder)); build_opts.add_option("-DPAD_X_BEFORE_REMAINDER_REFL=" + support::cpp11::to_string((pad_x_before_remainder + is_reflect) % vec_size)); build_opts.add_option("-DPAD_X_AFTER_REMAINDER_REFL=" + support::cpp11::to_string((pad_x_after_remainder - is_reflect) % vec_size)); build_opts.add_option("-DAFTER_PAD_FACT_X=" + support::cpp11::to_string(after_pad_fact_x)); build_opts.add_option_if(after_pad_fact_x < output_last_x, "-DAFTER_PAD_REM=" + support::cpp11::to_string(after_pad_fact_x % vec_size)); break; } default: ARM_COMPUTE_ERROR("Padding mode not supported."); } // Create kernel _kernel = static_cast(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options())); } Status CLPadLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PaddingList &padding, PixelValue constant_value, PaddingMode mode) { unsigned int vec_size; ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, padding, constant_value, mode)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), padding, constant_value, mode, vec_size).first); return Status{}; } void CLPadLayerKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); Window win_in = window; win_in.adjust(Window::DimX, _input_start_x, true); win_in.adjust(Window::DimY, _input_start_y, true); Window slice_out = window.first_slice_window_3D(); Window slice_in = win_in.first_slice_window_3D(); unsigned int batch = 0; do { unsigned int idx = 0; add_3D_tensor_argument(idx, _input, slice_in); add_3D_tensor_argument(idx, _output, slice_out); if(_4d_enabled) { add_argument(idx, batch++); } enqueue(queue, *this, slice_out, lws_hint()); } while(window.slide_window_slice_3D(slice_out) && win_in.slide_window_slice_3D(slice_in)); } } // namespace arm_compute