/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLMinMaxLocationKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include namespace arm_compute { inline int32_t FloatFlip(float val) { static_assert(sizeof(float) == sizeof(int32_t), "Float must be same size as int32_t"); int32_t int_val = 0; memcpy(&int_val, &val, sizeof(float)); int_val = (int_val >= 0) ? int_val : int_val ^ 0x7FFFFFFF; return int_val; } inline float IFloatFlip(int32_t val) { static_assert(sizeof(float) == sizeof(int32_t), "Float must be same size as int32_t"); float flt_val = 0.f; val = (val >= 0) ? val : val ^ 0x7FFFFFFF; memcpy(&flt_val, &val, sizeof(float)); return flt_val; } CLMinMaxKernel::CLMinMaxKernel() : _input(nullptr), _min_max(), _data_type_max_min() { } void CLMinMaxKernel::configure(const ICLImage *input, cl::Buffer *min_max) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S16, DataType::F32); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(input); ARM_COMPUTE_ERROR_ON(min_max == nullptr); _input = input; _min_max = min_max; const unsigned int num_elems_processed_per_iteration = input->info()->dimension(0); switch(input->info()->data_type()) { case DataType::U8: _data_type_max_min[0] = UCHAR_MAX; _data_type_max_min[1] = 0; break; case DataType::S16: _data_type_max_min[0] = SHRT_MAX; _data_type_max_min[1] = SHRT_MIN; break; case DataType::F32: _data_type_max_min[0] = FloatFlip(std::numeric_limits::max()); _data_type_max_min[1] = FloatFlip(std::numeric_limits::lowest()); break; default: ARM_COMPUTE_ERROR("You called with the wrong image data types"); } // Set kernel build options std::set build_opts{ "-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()) }; if(num_elems_processed_per_iteration % max_cl_vector_width != 0) { build_opts.emplace("-DNON_MULTIPLE_OF_16"); } if(input->info()->data_type() == DataType::F32) { build_opts.emplace("-DDATA_TYPE_MAX=" + support::cpp11::to_string(std::numeric_limits::max())); build_opts.emplace("-DDATA_TYPE_MIN=" + support::cpp11::to_string(std::numeric_limits::lowest())); build_opts.emplace("-DIS_DATA_TYPE_FLOAT"); } else { build_opts.emplace("-DDATA_TYPE_MAX=" + support::cpp11::to_string(_data_type_max_min[0])); build_opts.emplace("-DDATA_TYPE_MIN=" + support::cpp11::to_string(_data_type_max_min[1])); } // Create kernel _kernel = static_cast(CLKernelLibrary::get().create_kernel("minmax", build_opts)); // Set fixed arguments unsigned int idx = num_arguments_per_2D_tensor(); //Skip the input and output parameters _kernel.setArg(idx++, *_min_max); _kernel.setArg(idx++, static_cast(input->info()->dimension(0))); // Configure kernel window Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration)); update_window_and_padding(win, AccessWindowHorizontal(input->info(), 0, ceil_to_multiple(num_elems_processed_per_iteration, 16))); ICLKernel::configure_internal(win); } void CLMinMaxKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); // Reset mininum and maximum values queue.enqueueWriteBuffer(*_min_max, CL_FALSE /* blocking */, 0, _data_type_max_min.size() * sizeof(int), _data_type_max_min.data()); Window slice = window.first_slice_window_2D(); do { unsigned int idx = 0; add_2D_tensor_argument(idx, _input, slice); enqueue(queue, *this, slice, lws_hint()); } while(window.slide_window_slice_2D(slice)); cl_int min = 0; cl_int max = 0; queue.enqueueReadBuffer(*_min_max, CL_TRUE /* blocking */, 0 * sizeof(cl_int), sizeof(cl_int), static_cast(&min)); queue.enqueueReadBuffer(*_min_max, CL_TRUE /* blocking */, 1 * sizeof(cl_int), sizeof(cl_int), static_cast(&max)); if(_input->info()->data_type() == DataType::F32) { std::array min_max = { { IFloatFlip(min), IFloatFlip(max) } }; queue.enqueueWriteBuffer(*_min_max, CL_TRUE /* blocking */, 0, min_max.size() * sizeof(float), min_max.data()); } else { std::array min_max = { { min, max } }; queue.enqueueWriteBuffer(*_min_max, CL_TRUE /* blocking */, 0, min_max.size() * sizeof(int32_t), min_max.data()); } } CLMinMaxLocationKernel::CLMinMaxLocationKernel() : _input(nullptr), _min_max_count(nullptr) { } void CLMinMaxLocationKernel::configure(const ICLImage *input, cl::Buffer *min_max, cl::Buffer *min_max_count, ICLCoordinates2DArray *min_loc, ICLCoordinates2DArray *max_loc) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S16, DataType::F32); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(input); ARM_COMPUTE_ERROR_ON(min_max == nullptr); ARM_COMPUTE_ERROR_ON(min_max_count == nullptr && min_loc == nullptr && max_loc == nullptr); _input = input; _min_max_count = min_max_count; // Set kernel build options std::set build_opts; build_opts.emplace("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type())); build_opts.emplace((min_max_count != nullptr) ? "-DCOUNT_MIN_MAX" : ""); build_opts.emplace((min_loc != nullptr) ? "-DLOCATE_MIN" : ""); build_opts.emplace((max_loc != nullptr) ? "-DLOCATE_MAX" : ""); if(input->info()->data_type() == DataType::F32) { build_opts.emplace("-DIS_DATA_TYPE_FLOAT"); } // Create kernel _kernel = static_cast(CLKernelLibrary::get().create_kernel("minmaxloc", build_opts)); // Set static arguments unsigned int idx = num_arguments_per_2D_tensor(); //Skip the input and output parameters _kernel.setArg(idx++, *min_max); _kernel.setArg(idx++, *min_max_count); if(min_loc != nullptr) { _kernel.setArg(idx++, min_loc->cl_buffer()); _kernel.setArg(idx++, min_loc->max_num_values()); } if(max_loc != nullptr) { _kernel.setArg(idx++, max_loc->cl_buffer()); _kernel.setArg(idx++, max_loc->max_num_values()); } // Configure kernel window constexpr unsigned int num_elems_processed_per_iteration = 1; Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration)); update_window_and_padding(win, AccessWindowHorizontal(input->info(), 0, num_elems_processed_per_iteration)); ICLKernel::configure_internal(win); } void CLMinMaxLocationKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); static const unsigned int zero_count = 0; queue.enqueueWriteBuffer(*_min_max_count, CL_FALSE, 0 * sizeof(zero_count), sizeof(zero_count), &zero_count); queue.enqueueWriteBuffer(*_min_max_count, CL_FALSE, 1 * sizeof(zero_count), sizeof(zero_count), &zero_count); Window slice = window.first_slice_window_2D(); do { unsigned int idx = 0; add_2D_tensor_argument(idx, _input, slice); enqueue(queue, *this, slice, lws_hint()); } while(window.slide_window_slice_2D(slice)); } } // namespace arm_compute