/* * Copyright (c) 2018-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "support/StringSupport.h" #include #include namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output, int32_t a_offset, int32_t b_offset, const GEMMLowpOutputStageInfo &output_stage, const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32); if(bias != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != bias->dimension(0)); } ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1); if(output_stage.is_quantized_per_channel) { ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != output_shifts->dimension(0)); ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != output_multipliers->dimension(0)); } // If a_offset == 0, vector_sum_col can be a nullptr if(a_offset != 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0)); } // If b_offset == 0, vector_sum_row can be a nullptr if(b_offset != 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32); // Check if input is a 3D reinterpretation const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x(); // Validate input ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2))); ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1)); TensorShape output_shape = mm_result->tensor_shape(); if(output_shape.num_dimensions() > 1) { const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2; TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape(); vector_sum_row_shape.collapse_from(1); output_shape.collapse_from(output_batch_idx); ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx], "mm_result tensor must have the same number of batches of output tensor"); if(a_offset != 0) { TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape(); vector_sum_col_shape.collapse_from(1); ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1], "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1"); } } } ARM_COMPUTE_RETURN_ERROR_ON(output_stage.type == GEMMLowpOutputStageType::NONE); // Checks performed when output is configured if((output != nullptr) && (output->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON(output_stage.output_data_type != output->data_type()); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mm_result, output); } ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output_stage.gemmlowp_multipliers.size() != output_stage.gemmlowp_shifts.size(), "per channel quantization info is incorrect"); return Status{}; } std::pair validate_and_configure_window(ITensorInfo *mm_result, ITensorInfo *vector_sum_col, ITensorInfo *vector_sum_row, ITensorInfo *bias, ITensorInfo *output, int32_t a_offset, int32_t b_offset, const GEMMLowpOutputStageInfo &output_stage, ITensorInfo *output_multipliers, ITensorInfo *output_shifts) { constexpr unsigned int num_elems_processed_per_iteration = 4; bool window_changed = false; // Auto initialize the output auto_init_if_empty(*output, mm_result->clone()->set_data_type(output_stage.output_data_type)); // Configure kernel window Window win = calculate_max_window(*mm_result, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal mm_result_access(mm_result, 0, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, mm_result_access); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, output_access); if(a_offset != 0) { AccessWindowHorizontal vector_sum_col_access(vector_sum_col, 0, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, vector_sum_col_access); } if(b_offset != 0) { AccessWindowStatic vector_sum_row_access(vector_sum_row, 0, 0, vector_sum_row->dimension(0), 0); // NOLINT window_changed = window_changed || update_window_and_padding(win, vector_sum_row_access); } if(bias != nullptr) { AccessWindowStatic bias_access(bias, 0, 0, ceil_to_multiple(bias->dimension(0), num_elems_processed_per_iteration), bias->tensor_shape()[1]); window_changed = window_changed || update_window_and_padding(win, bias_access); } if(output_multipliers->dimension(0) > 1) { AccessWindowHorizontal output_multipliers_access(output_multipliers, 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_shifts_access(output_shifts, 0, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, output_multipliers_access, output_shifts_access); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace CLGEMMLowpOffsetContributionOutputStageKernel::CLGEMMLowpOffsetContributionOutputStageKernel() : _mm_result(nullptr), _vector_sum_col(nullptr), _vector_sum_row(nullptr), _bias(nullptr), _output(nullptr), _output_multipliers(nullptr), _output_shifts(nullptr), _is_quantized_per_channel(false) { } void CLGEMMLowpOffsetContributionOutputStageKernel::configure(const ICLTensor *mm_result, const ICLTensor *vector_sum_col, const ICLTensor *vector_sum_row, const ICLTensor *bias, ICLTensor *output, int32_t k, int32_t a_offset, int32_t b_offset, const GEMMLowpOutputStageInfo &output_stage, const ICLTensor *output_multipliers, const ICLTensor *output_shifts) { configure(CLKernelLibrary::get().get_compile_context(), mm_result, vector_sum_col, vector_sum_row, bias, output, k, a_offset, b_offset, output_stage, output_multipliers, output_shifts); } void CLGEMMLowpOffsetContributionOutputStageKernel::configure(const CLCompileContext &compile_context, const ICLTensor *mm_result, const ICLTensor *vector_sum_col, const ICLTensor *vector_sum_row, const ICLTensor *bias, ICLTensor *output, int32_t k, int32_t a_offset, int32_t b_offset, const GEMMLowpOutputStageInfo &output_stage, const ICLTensor *output_multipliers, const ICLTensor *output_shifts) { // Perform validate step ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, output, output_multipliers, output_shifts); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result->info(), vector_sum_col != nullptr ? vector_sum_col->info() : nullptr, vector_sum_row != nullptr ? vector_sum_row->info() : nullptr, bias != nullptr ? bias->info() : nullptr, output->info(), a_offset, b_offset, output_stage, output_multipliers->info(), output_shifts->info())); // NOLINT const int min = output_stage.gemmlowp_min_bound; const int max = output_stage.gemmlowp_max_bound; _vector_sum_col = vector_sum_col; _vector_sum_row = vector_sum_row; _mm_result = mm_result; _bias = bias; _output = output; _output_multipliers = output_multipliers; _output_shifts = output_shifts; _is_quantized_per_channel = output_stage.is_quantized_per_channel; // Check if input is a 3D reinterpretation const bool reinterpret_as_3d = vector_sum_row != nullptr && mm_result->info()->num_dimensions() > 1 && mm_result->info()->tensor_shape().y() != vector_sum_row->info()->tensor_shape().x(); // Set the arguments to pass at compile time CLBuildOptions build_opts; // If a_offset == 0, vector_sum_col can be a nullptr if(a_offset != 0) { build_opts.add_option("-DA_OFFSET=" + support::cpp11::to_string(a_offset)); build_opts.add_option_if(vector_sum_col->info()->tensor_shape().num_dimensions() > 1, "-DSUM_COL_HAS_BATCHES"); } // If b_offset == 0, vector_sum_row can be a nullptr build_opts.add_option_if(b_offset != 0, "-DB_OFFSET=" + support::cpp11::to_string(b_offset)); build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(a_offset * b_offset * k)); build_opts.add_option_if(reinterpret_as_3d, "-DHEIGHT_INPUT3D=" + support::cpp11::to_string(mm_result->info()->dimension(1))); build_opts.add_option_if(reinterpret_as_3d, "-DDEPTH_INPUT3D=" + support::cpp11::to_string(mm_result->info()->dimension(2))); build_opts.add_option_if(bias != nullptr, "-DADD_BIAS"); build_opts.add_option("-DRESULT_OFFSET=" + support::cpp11::to_string(output_stage.gemmlowp_offset)); build_opts.add_option("-DRESULT_MULTIPLIER=" + support::cpp11::to_string(output_stage.gemmlowp_multipliers[0])); build_opts.add_option("-DRESULT_SHIFT=" + support::cpp11::to_string(output_stage.gemmlowp_shifts[0])); build_opts.add_option_if(_is_quantized_per_channel, "-DPER_CHANNEL_QUANTIZATION"); build_opts.add_option("-DOUTPUT_DATA_TYPE=" + get_cl_type_from_data_type(output->info()->data_type())); PixelValue min_val{}; PixelValue max_val{}; std::tie(min_val, max_val) = get_min_max(output->info()->data_type()); build_opts.add_option_if((min > min_val.get()), "-DMIN_BOUND=" + support::cpp11::to_string(min)); build_opts.add_option_if((max < max_val.get()), "-DMAX_BOUND=" + support::cpp11::to_string(max)); std::string kernel_name("gemmlowp_offset_contribution"); kernel_name += "_" + string_from_gemmlowp_output_stage(output_stage.type); // Create kernel _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); // Configure kernel window auto win_config = validate_and_configure_window(mm_result->info(), vector_sum_col != nullptr ? vector_sum_col->info() : nullptr, vector_sum_row != nullptr ? vector_sum_row->info() : nullptr, bias != nullptr ? bias->info() : nullptr, output->info(), a_offset, b_offset, output_stage, output_multipliers->info(), output_shifts->info()); // NOLINT ARM_COMPUTE_ERROR_THROW_ON(win_config.first); ICLKernel::configure_internal(win_config.second); // Set config_id for enabling LWS tuning _config_id = kernel_name + "_"; _config_id += support::cpp11::to_string(mm_result->info()->dimension(0)); _config_id += "_"; _config_id += support::cpp11::to_string(mm_result->info()->dimension(1)); _config_id += "_"; _config_id += support::cpp11::to_string(mm_result->info()->dimension(2)); } Status CLGEMMLowpOffsetContributionOutputStageKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output, int32_t a_offset, int32_t b_offset, const GEMMLowpOutputStageInfo &output_stage, const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, output, a_offset, b_offset, output_stage, output_multipliers, output_shifts)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(mm_result->clone().get(), vector_sum_col != nullptr ? vector_sum_col->clone().get() : nullptr, vector_sum_row != nullptr ? vector_sum_row->clone().get() : nullptr, bias != nullptr ? bias->clone().get() : nullptr, output->clone().get(), a_offset, b_offset, output_stage, output_multipliers->clone().get(), output_shifts->clone().get()) .first); // NOLINT return Status{}; } void CLGEMMLowpOffsetContributionOutputStageKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ); Window slice = collapsed.first_slice_window_3D(); // Set window for vector_sum_col Window win_vector_sum_col = slice; win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0)); // Set window for vector_sum_row Window win_vector_sum_row = slice; win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0)); Window biases_slice = slice; biases_slice.set(Window::DimY, Window::Dimension(0, 1, 1)); biases_slice.set(Window::DimZ, Window::Dimension(0, 1, 1)); do { unsigned int idx = 0; add_3D_tensor_argument(idx, _mm_result, slice); add_2D_tensor_argument_if((_vector_sum_col != nullptr), idx, _vector_sum_col, win_vector_sum_col); add_2D_tensor_argument_if((_vector_sum_row != nullptr), idx, _vector_sum_row, win_vector_sum_row); add_1D_tensor_argument_if((_bias != nullptr), idx, _bias, biases_slice); add_3D_tensor_argument(idx, _output, slice); add_1D_tensor_argument_if(_is_quantized_per_channel, idx, _output_multipliers, biases_slice); add_1D_tensor_argument_if(_is_quantized_per_channel, idx, _output_shifts, biases_slice); enqueue(queue, *this, slice, lws_hint()); } while(collapsed.slide_window_slice_3D(slice)); } } // namespace arm_compute