/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLElementwiseOperationKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLValidate.h" #include "arm_compute/core/CL/ICLTensor.h" #include namespace arm_compute { namespace { constexpr unsigned int num_elems_processed_per_iteration = 16; std::map supported_arithmetic_ops = { { ArithmeticOperation::ADD, "ADD" }, { ArithmeticOperation::SUB, "SUB" }, { ArithmeticOperation::DIV, "DIV" }, { ArithmeticOperation::SQUARED_DIFF, "SQUARED_DIFF" }, { ArithmeticOperation::MIN, "MIN" }, { ArithmeticOperation::MAX, "MAX" }, }; std::map supported_sat_arithmetic_ops = { { ArithmeticOperation::ADD, "ADD" }, { ArithmeticOperation::SUB, "SUB" }, }; std::string generate_id_for_tuning_common(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output) { std::string config_id; // Set config_id for enabling LWS tuning config_id = kernel_name; config_id += "_"; config_id += lower_string(string_from_data_type(input1.data_type())); config_id += "_"; config_id += support::cpp11::to_string(output.dimension(0)); config_id += "_"; config_id += support::cpp11::to_string(output.dimension(1)); return config_id; } Status validate_arguments_with_division_rules(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(&input1, &input2, &output); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2); const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } Status validate_arguments_with_arithmetic_rules(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input2); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::F32); const bool is_qasymm = is_data_type_quantized_asymmetric(input1.data_type()) || is_data_type_quantized_asymmetric(input2.data_type()); if(is_qasymm) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2); } const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG((output.data_type() == DataType::U8) && ((input1.data_type() != DataType::U8) || (input2.data_type() != DataType::U8)), "Output can only be U8 if both inputs are U8"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0), "Wrong shape for output"); if(is_qasymm) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output); } } return Status{}; } CLBuildOptions generate_build_options_with_arithmetic_rules(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, const std::string &operation_string) { CLBuildOptions build_opts; build_opts.add_option("-DDATA_TYPE_IN1=" + get_cl_type_from_data_type(input1.data_type())); build_opts.add_option("-DDATA_TYPE_IN2=" + get_cl_type_from_data_type(input2.data_type())); build_opts.add_option("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output.data_type())); build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration)); build_opts.add_option("-DOP=" + operation_string); if(is_data_type_quantized_asymmetric(input1.data_type())) { build_opts.add_option("-DOFFSET_IN1=" + support::cpp11::to_string(input1.quantization_info().offset)); build_opts.add_option("-DOFFSET_IN2=" + support::cpp11::to_string(input2.quantization_info().offset)); build_opts.add_option("-DOFFSET_OUT=" + support::cpp11::to_string(output.quantization_info().offset)); build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(input1.quantization_info().scale)); build_opts.add_option("-DSCALE_IN2=" + float_to_string_with_full_precision(input2.quantization_info().scale)); build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(output.quantization_info().scale)); } return build_opts; } std::pair configure_window_arithmetic_common(const ValidRegion &valid_region, ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output) { Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration)); Window win_input1 = win.broadcast_if_dimension_le_one(input1); Window win_input2 = win.broadcast_if_dimension_le_one(input2); AccessWindowHorizontal input1_access(&input1, 0, num_elems_processed_per_iteration); AccessWindowHorizontal input2_access(&input2, 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(&output, 0, num_elems_processed_per_iteration); bool window_changed = update_window_and_padding(win_input1, input1_access) || update_window_and_padding(win_input2, input2_access) || update_window_and_padding(win, output_access); output_access.set_valid_region(win, valid_region); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } std::pair validate_and_configure_window_for_arithmetic_operators(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; set_shape_if_empty(output, out_shape); if(input1.data_type() == DataType::S16 || input2.data_type() == DataType::S16) { set_format_if_unknown(output, Format::S16); } else if(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16) { set_format_if_unknown(output, Format::F16); } else if(input1.data_type() == DataType::F32 || input2.data_type() == DataType::F32) { set_format_if_unknown(output, Format::F32); } return configure_window_arithmetic_common(valid_region, input1, input2, output); } std::pair validate_and_configure_window_for_division(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; auto_init_if_empty(output, out_shape, 1, input1.data_type()); return configure_window_arithmetic_common(valid_region, input1, input2, output); } } // namespace CLElementwiseOperationKernel::CLElementwiseOperationKernel() : _input1(nullptr), _input2(nullptr), _output(nullptr) { } void CLElementwiseOperationKernel::configure_common(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info())); // Configure kernel window auto win_config = validate_and_configure_window(*input1->info(), *input2->info(), *output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); _input1 = input1; _input2 = input2; _output = output; std::string kernel_name = "elementwise_operation_" + name(); if(is_data_type_quantized_asymmetric(input1->info()->data_type())) { kernel_name += "_quantized"; } // Set kernel build options CLBuildOptions build_opts = generate_build_options(*input1->info(), *input2->info(), *output->info()); // Create kernel _kernel = static_cast(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options())); ICLKernel::configure_internal(win_config.second); _config_id = generate_id_for_tuning(kernel_name, *input1->info(), *output->info()); } void CLElementwiseOperationKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); const TensorShape &in_shape1 = _input1->info()->tensor_shape(); const TensorShape &in_shape2 = _input2->info()->tensor_shape(); const TensorShape &out_shape = _output->info()->tensor_shape(); bool can_collapse = true; const bool is_vector = in_shape1.num_dimensions() == 1 || in_shape2.num_dimensions() == 1; if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1 && !is_vector) { can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ); for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); d++) { can_collapse = (in_shape1[d] == in_shape2[d]); } } bool has_collapsed = false; Window collapsed = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window; const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1; const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2; Window slice = collapsed.first_slice_window_3D(); Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed); Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed); do { unsigned int idx = 0; add_3D_tensor_argument(idx, _input1, slice_input1); add_3D_tensor_argument(idx, _input2, slice_input2); add_3D_tensor_argument(idx, _output, slice); enqueue(queue, *this, slice, lws_hint()); collapsed.slide_window_slice_3D(slice_input1); collapsed.slide_window_slice_3D(slice_input2); } while(collapsed.slide_window_slice_3D(slice)); } BorderSize CLElementwiseOperationKernel::border_size() const { const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0)); const unsigned int border = std::min(num_elems_processed_per_iteration - 1U, replicateSize); return BorderSize{ 0, border, 0, 0 }; } /** Arithmetic operations with saturation*/ void CLSaturatedArithmeticOperationKernel::configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ConvertPolicy &policy) { _policy = policy; _op = op; configure_common(input1, input2, output); } Status CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ConvertPolicy &policy) { ARM_COMPUTE_UNUSED(op, policy); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*input1, *input2, *output)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_arithmetic_operators(*input1->clone(), *input2->clone(), *output->clone()).first); return Status{}; } std::pair CLSaturatedArithmeticOperationKernel::validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output) { return validate_and_configure_window_for_arithmetic_operators(input1, input2, output); } Status CLSaturatedArithmeticOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { return validate_arguments_with_arithmetic_rules(input1, input2, output); } CLBuildOptions CLSaturatedArithmeticOperationKernel::generate_build_options(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { const bool has_float_out = is_data_type_float(output.data_type()); auto build_options = generate_build_options_with_arithmetic_rules(input1, input2, output, name()); build_options.add_option((_policy == ConvertPolicy::WRAP || has_float_out) ? "-DWRAP" : "-DSATURATE"); return build_options; } std::string CLSaturatedArithmeticOperationKernel::generate_id_for_tuning(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output) { auto config_id = generate_id_for_tuning_common(kernel_name, input1, output); config_id += (_policy == ConvertPolicy::WRAP) ? "_wrap_" : "_saturate_"; config_id += lower_string(string_from_data_layout(input1.data_layout())); return config_id; } std::string CLSaturatedArithmeticOperationKernel::name() { return supported_sat_arithmetic_ops[_op]; } /** Arithmetic operations*/ void CLArithmeticOperationKernel::configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output) { _op = op; configure_common(input1, input2, output); } Status CLArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); if(op == ArithmeticOperation::DIV) { // Division doesn't support integer arithmetic ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_division_rules(*input1, *input2, *output)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_division(*input1->clone(), *input2->clone(), *output->clone()).first); } else { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*input1, *input2, *output)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_arithmetic_operators(*input1->clone(), *input2->clone(), *output->clone()).first); } return Status{}; } std::pair CLArithmeticOperationKernel::validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output) { if(_op == ArithmeticOperation::DIV) { // Division doesn't support integer arithmetic return validate_and_configure_window_for_division(input1, input2, output); } else { return validate_and_configure_window_for_arithmetic_operators(input1, input2, output); } } Status CLArithmeticOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { if(_op == ArithmeticOperation::DIV) { // Division doesn't support integer arithmetic return validate_arguments_with_division_rules(input1, input2, output); } else { return validate_arguments_with_arithmetic_rules(input1, input2, output); } } CLBuildOptions CLArithmeticOperationKernel::generate_build_options(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { return generate_build_options_with_arithmetic_rules(input1, input2, output, name()); } std::string CLArithmeticOperationKernel::generate_id_for_tuning(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output) { return generate_id_for_tuning_common(kernel_name, input1, output); } std::string CLArithmeticOperationKernel::name() { return supported_arithmetic_ops[_op]; } } // namespace arm_compute