/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLDirectConvolutionLayerOutputStageKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CL/CLValidate.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Window.h" #include #include using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::S32, DataType::F16, DataType::F32); if(bias != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(bias); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32, DataType::F16, DataType::F32); if(is_data_type_quantized_asymmetric(input->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias); } ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1); } else { ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_float(input->data_type()), "Calling output stage kernel with floating point arguments"); } // Checks performed on output if(input->data_type() == DataType::S32) { // Quantized configuration checks ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8); } else { // In case of out-of-place computation (supported for non-quantized configurations) if((output != nullptr) && (output->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output) { bool window_changed = false; unsigned int num_elems_processed_per_iteration = 16 / element_size_from_data_type(input->data_type()); // Configure kernel window Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); // Input window AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, input_access); // Bias window if(bias != nullptr) { AccessWindowStatic bias_access(bias, 0, 0, ceil_to_multiple(bias->dimension(0), num_elems_processed_per_iteration), bias->dimension(1)); window_changed = window_changed || update_window_and_padding(win, bias_access); } // Output window if(output != nullptr && (output->total_size() != 0)) { AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); } else { input_access.set_valid_region(win, ValidRegion(Coordinates(), input->tensor_shape())); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace CLDirectConvolutionLayerOutputStageKernel::CLDirectConvolutionLayerOutputStageKernel() : _input(nullptr), _bias(nullptr), _output(nullptr), _result_fixedpoint_multiplier(0), _result_shift(0), _result_offset_after_shift(0) { } void CLDirectConvolutionLayerOutputStageKernel::configure(ICLTensor *input, const ICLTensor *bias, ICLTensor *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift) { ARM_COMPUTE_ERROR_ON_NULLPTR(input); // Auto-initialize output if required if(output != nullptr) { // Work out expected output data type const DataType output_dt = (input->info()->data_type() == DataType::S32) ? DataType::QASYMM8 : input->info()->data_type(); // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_dt)); } // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias == nullptr) ? nullptr : bias->info(), (output == nullptr) ? nullptr : output->info())); _bias = bias; _input = input; _output = output; _result_fixedpoint_multiplier = result_fixedpoint_multiplier; _result_shift = result_shift; _result_offset_after_shift = result_offset_after_shift; const unsigned int num_elems_accessed_per_iteration = 16 / element_size_from_data_type(input->info()->data_type()); // Create kernel CLBuildOptions build_opts; build_opts.add_option_if(bias != nullptr, "-DHAS_BIAS"); build_opts.add_option("-D" + string_from_data_layout(input->info()->data_layout())); build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_accessed_per_iteration)); _kernel = static_cast(CLKernelLibrary::get().create_kernel("output_stage_quantized", build_opts.options())); // Set static kernel arguments int idx = 2 * num_arguments_per_3D_tensor() + ((bias != nullptr) ? num_arguments_per_1D_tensor() : 0); _kernel.setArg(idx++, _result_offset_after_shift); _kernel.setArg(idx++, _result_fixedpoint_multiplier); _kernel.setArg(idx++, _result_shift); // Configure kernel window auto win_config = validate_and_configure_window(input->info(), (bias == nullptr) ? nullptr : bias->info(), (output == nullptr) ? nullptr : output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); ICLKernel::configure_internal(win_config.second); } Status CLDirectConvolutionLayerOutputStageKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), bias == nullptr ? nullptr : bias->clone().get(), output == nullptr ? nullptr : output->clone().get()).first); return Status{}; } void CLDirectConvolutionLayerOutputStageKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_MISMATCHING_WINDOWS(ICLKernel::window(), window); Window slice = window.first_slice_window_3D(); // Set bias vector if(_bias != nullptr) { unsigned int idx1 = 2 * num_arguments_per_3D_tensor(); Window slice_biases; slice_biases.use_tensor_dimensions(_bias->info()->tensor_shape()); add_1D_tensor_argument(idx1, _bias, slice_biases); } // Run kernel do { // Set arguments unsigned int idx = 0; add_3D_tensor_argument(idx, _input, slice); add_3D_tensor_argument(idx, _output, slice); enqueue(queue, *this, slice, lws_hint()); } while(window.slide_window_slice_3D(slice)); }