/* * Copyright (c) 2019-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayerNativeKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/CLValidate.h" #include "arm_compute/core/CL/ICLKernel.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "support/StringSupport.h" namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const DWCWeightsKernelInfo &dwc_weights_info, const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts) { ARM_COMPUTE_UNUSED(dwc_info); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NHWC); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(depth_multiplier > 1 && dwc_weights_info.n0 != 1); ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().first < 1); ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().second < 1); ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1)); const size_t idx_c = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL); ARM_COMPUTE_UNUSED(idx_c); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_c) != (input->dimension(idx_c) * depth_multiplier)); const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation); const bool is_quantized = is_data_type_quantized(input->data_type()); if(biases != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != output_shape[idx_c]); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); if(is_quantized) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); } } if(is_quantized) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output_multipliers, output_shifts); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1); if(is_data_type_quantized_per_channel(weights->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(output_shape[idx_c] != output_multipliers->dimension(0)); ARM_COMPUTE_RETURN_ERROR_ON(output_shape[idx_c] != output_shifts->dimension(0)); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); ARM_COMPUTE_RETURN_ERROR_ON(1 != output_multipliers->dimension(0)); ARM_COMPUTE_RETURN_ERROR_ON(1 != output_shifts->dimension(0)); } } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); } if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } if(is_data_type_quantized(input->data_type())) { const UniformQuantizationInfo iq_info = input->quantization_info().uniform(); const UniformQuantizationInfo wq_info = weights->quantization_info().uniform(); const UniformQuantizationInfo oq_info = (output->total_size() != 0) ? output->quantization_info().uniform() : iq_info; float multiplier = iq_info.scale * wq_info.scale / oq_info.scale; int output_multiplier = 0; int output_shift = 0; ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift)); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *output, const DWCWeightsKernelInfo &dwc_weights_info, const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, ITensorInfo *output_multipliers, ITensorInfo *output_shifts) { ARM_COMPUTE_UNUSED(dwc_info); // Get convolved dimensions const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation); auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape).set_quantization_info(output->quantization_info())); const unsigned int n0 = dwc_weights_info.n0; // Configure kernel window Window win = calculate_max_window(*output, Steps(n0)); // The following access windows are only valid in case of NHWC and because n0 must unit in case depth_multiplier > 1 AccessWindowHorizontal input_access(input, 0, n0); AccessWindowHorizontal weights_access(weights, 0, n0); AccessWindowHorizontal output_access(output, 0, n0); bool window_changed = false; if(bias != nullptr) { AccessWindowHorizontal bias_access(bias, 0, n0); window_changed = update_window_and_padding(win, input_access, weights_access, bias_access, output_access); } else { window_changed = update_window_and_padding(win, input_access, weights_access, output_access); } if(is_data_type_quantized(input->data_type())) { if((output_multipliers != nullptr) && (output_shifts != nullptr)) { AccessWindowHorizontal output_multipliers_access(output_multipliers, 0, n0); AccessWindowHorizontal output_shifts_access(output_shifts, 0, n0); window_changed = window_changed || update_window_and_padding(win, output_multipliers_access, output_shifts_access); } else { Status err = ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "output_multipliers and output_shifts must be non-nullptr for quantized input"); return std::make_pair(err, win); } } output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace CLDepthwiseConvolutionLayerNativeKernel::CLDepthwiseConvolutionLayerNativeKernel() : _input(nullptr), _weights(nullptr), _biases(nullptr), _output(nullptr), _depth_multiplier(1), _output_multipliers(nullptr), _output_shifts(nullptr), _is_quantized(false) { } void CLDepthwiseConvolutionLayerNativeKernel::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const DWCWeightsKernelInfo &dwc_weights_info, const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const ICLTensor *output_multipliers, const ICLTensor *output_shifts) { configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, output_multipliers, output_shifts); } void CLDepthwiseConvolutionLayerNativeKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const DWCWeightsKernelInfo &dwc_weights_info, const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const ICLTensor *output_multipliers, const ICLTensor *output_shifts) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, (output_multipliers != nullptr) ? output_multipliers->info() : nullptr, (output_shifts != nullptr) ? output_shifts->info() : nullptr)); auto win_config = validate_and_configure_window(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, (output_multipliers != nullptr) ? output_multipliers->info() : nullptr, (output_shifts != nullptr) ? output_shifts->info() : nullptr); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); _input = input; _output = output; _weights = weights; _biases = biases; _depth_multiplier = depth_multiplier; _output_multipliers = output_multipliers; _output_shifts = output_shifts; _is_quantized = is_data_type_quantized(input->info()->data_type()); const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT); const size_t weights_width = weights->info()->dimension(idx_w); const size_t weights_height = weights->info()->dimension(idx_h); CLBuildOptions build_opts; build_opts.add_option_if(_biases != nullptr, "-DHAS_BIAS"); build_opts.add_option_if(_input->info()->tensor_shape().total_size_upper(3) > 1, "-DDST_DEPTH=" + support::cpp11::to_string(static_cast(_output->info()->dimension(2)))); build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(_input->info()->data_type())); build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(dwc_info.activation_info.activation()))); build_opts.add_option("-DDEPTH_MULTIPLIER=" + support::cpp11::to_string(depth_multiplier)); build_opts.add_option("-DN0=" + support::cpp11::to_string(dwc_weights_info.n0)); build_opts.add_option("-DSRC_DIM1=" + support::cpp11::to_string(_input->info()->dimension(1))); build_opts.add_option("-DSRC_DIM2=" + support::cpp11::to_string(_input->info()->dimension(2))); build_opts.add_option("-DKERNEL_WIDTH=" + support::cpp11::to_string(weights_width)); build_opts.add_option("-DKERNEL_HEIGHT=" + support::cpp11::to_string(weights_height)); build_opts.add_option("-DCONV_PAD_TOP=" + support::cpp11::to_string(conv_info.pad_top())); build_opts.add_option("-DCONV_PAD_LEFT=" + support::cpp11::to_string(conv_info.pad_left())); build_opts.add_option("-DCONV_STRIDE_X=" + support::cpp11::to_string(conv_info.stride().first)); build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(conv_info.stride().second)); build_opts.add_option("-DDILATION_X=" + support::cpp11::to_string(dilation.x())); build_opts.add_option("-DDILATION_Y=" + support::cpp11::to_string(dilation.y())); std::string kernel_name = (_is_quantized) ? "dwc_MxN_native_quantized8_nhwc" : "dwc_MxN_native_fp_nhwc"; if(_is_quantized) { const UniformQuantizationInfo iq_info = _input->info()->quantization_info().uniform(); const UniformQuantizationInfo wq_info = _weights->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = _output->info()->quantization_info().uniform(); build_opts.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-iq_info.offset)); build_opts.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-wq_info.offset)); build_opts.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(oq_info.offset)); build_opts.add_option_if(is_data_type_quantized_per_channel(weights->info()->data_type()), "-DPER_CHANNEL_QUANTIZATION"); // Compute non-per-channel multiplier and shift anyway to make OpenCL kernel simpler float multiplier = iq_info.scale * wq_info.scale / oq_info.scale; int output_multiplier = 0; int output_shift = 0; quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift); build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier)); build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift)); if(dwc_info.activation_info.enabled()) { const int a_val = quantize_qasymm8(dwc_info.activation_info.a(), oq_info); const int b_val = quantize_qasymm8(dwc_info.activation_info.b(), oq_info); const int o1 = oq_info.offset; build_opts.add_option("-DA_VAL=" + support::cpp11::to_string(a_val)); build_opts.add_option("-DB_VAL=" + support::cpp11::to_string(b_val)); build_opts.add_option("-DCONST_0=" + support::cpp11::to_string(o1)); const float s1 = iq_info.scale; build_opts.add_option("-DS1_VAL=" + float_to_string_with_full_precision(s1)); build_opts.add_option("-DO1_VAL=" + support::cpp11::to_string(o1)); } build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type())); build_opts.add_option("-DWEIGHTS_TYPE=" + get_cl_type_from_data_type(weights->info()->data_type())); } else { build_opts.add_option_if(dwc_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(dwc_info.activation_info.a())); build_opts.add_option_if(dwc_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(dwc_info.activation_info.b())); } ICLKernel::configure_internal(win_config.second); _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); // Set config_id for enabling LWS tuning _config_id = kernel_name; _config_id += "_"; _config_id += support::cpp11::to_string(input->info()->dimension(0)); _config_id += "_"; _config_id += support::cpp11::to_string(input->info()->dimension(1)); _config_id += "_"; _config_id += support::cpp11::to_string(input->info()->dimension(2)); _config_id += "_"; _config_id += support::cpp11::to_string(output->info()->dimension(0)); _config_id += "_"; _config_id += support::cpp11::to_string(output->info()->dimension(1)); _config_id += "_"; _config_id += support::cpp11::to_string(output->info()->dimension(2)); _config_id += "_"; _config_id += string_from_data_type(input->info()->data_type()); } Status CLDepthwiseConvolutionLayerNativeKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const DWCWeightsKernelInfo &dwc_weights_info, const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, output_multipliers, output_shifts)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(), biases != nullptr ? biases->clone().get() : nullptr, output->clone().get(), dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, output_multipliers != nullptr ? output_multipliers->clone().get() : nullptr, output_shifts != nullptr ? output_shifts->clone().get() : nullptr) .first); return Status{}; } void CLDepthwiseConvolutionLayerNativeKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); // Collapse window Window window_collapsed = window.collapse(ICLKernel::window(), Window::DimZ); Window slice_in = window.first_slice_window_4D(); Window slice_out = window_collapsed.first_slice_window_4D(); if(_depth_multiplier != 1) { ARM_COMPUTE_ERROR_ON(slice_out.x().step() != 1); slice_out.set(Window::DimX, Window::Dimension(0, _input->info()->tensor_shape()[0], 1)); } unsigned int idx = 2 * num_arguments_per_4D_tensor() + num_arguments_per_3D_tensor(); // Set output multipliers in case of quantized data type if(_is_quantized) { add_1D_tensor_argument(idx, _output_multipliers, slice_in); add_1D_tensor_argument(idx, _output_shifts, slice_in); } if(_biases != nullptr) { add_1D_tensor_argument(idx, _biases, slice_in); } do { idx = 0; add_4D_tensor_argument(idx, _input, slice_in); add_4D_tensor_argument(idx, _output, slice_out); add_3D_tensor_argument(idx, _weights, slice_out); enqueue(queue, *this, slice_out, lws_hint()); } while(window_collapsed.slide_window_slice_4D(slice_out) && window.slide_window_slice_4D(slice_in)); } } // namespace arm_compute