/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLComparisonKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLValidate.h" #include "arm_compute/core/CL/ICLTensor.h" #include namespace arm_compute { namespace { // Create supported comparisons map const std::map supported_comparison_ops = { { ComparisonOperation::Equal, "EQUAL" }, { ComparisonOperation::NotEqual, "NOTEQUAL" }, { ComparisonOperation::Greater, "GREATER" }, { ComparisonOperation::GreaterEqual, "GREATEREQUAL" }, { ComparisonOperation::Less, "LESS" }, { ComparisonOperation::LessEqual, "LESSEQUAL" }, }; int calculate_num_elems_processed_per_iteration(const ITensorInfo &input) { return 16 / input.element_size(); } Status validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, ComparisonOperation operation) { ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::S8, DataType::QASYMM8, DataType::U16, DataType::S16, DataType::U32, DataType::S32, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2); ARM_COMPUTE_RETURN_ERROR_ON(supported_comparison_ops.count(operation) == 0); const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; const unsigned int num_elems_processed_per_iteration = calculate_num_elems_processed_per_iteration(input1); // Auto initialize output if not initialized auto_init_if_empty(output, out_shape, 1, DataType::U8, QuantizationInfo()); Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration)); Window win_input1 = win.broadcast_if_dimension_le_one(input1); Window win_input2 = win.broadcast_if_dimension_le_one(input2); AccessWindowHorizontal input1_access(&input1, 0, num_elems_processed_per_iteration); AccessWindowHorizontal input2_access(&input2, 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(&output, 0, num_elems_processed_per_iteration); bool window_changed = update_window_and_padding(win_input1, input1_access) || update_window_and_padding(win_input2, input2_access) || update_window_and_padding(win, output_access); output_access.set_valid_region(win, valid_region); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace CLComparisonKernel::CLComparisonKernel() : _input1(nullptr), _input2(nullptr), _output(nullptr) { } void CLComparisonKernel::configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, ComparisonOperation operation) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info(), operation)); // Configure kernel window auto win_config = validate_and_configure_window(*input1->info(), *input2->info(), *output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); _input1 = input1; _input2 = input2; _output = output; const std::string &operation_name = supported_comparison_ops.at(operation); std::string kernel_name = "compare_" + lower_string(operation_name); // Set kernel build options std::set build_opts; build_opts.emplace("-DDATA_TYPE=" + get_cl_type_from_data_type(input1->info()->data_type())); build_opts.emplace("-DVEC_SIZE=" + support::cpp11::to_string(calculate_num_elems_processed_per_iteration(*input1->info()))); build_opts.emplace("-DOP=" + operation_name); build_opts.emplace("-DOP_NAME=" + lower_string(operation_name)); if(is_data_type_quantized_asymmetric(input1->info()->data_type())) { build_opts.emplace("-DOFFSET_IN1=" + support::cpp11::to_string(input1->info()->quantization_info().offset)); build_opts.emplace("-DOFFSET_IN2=" + support::cpp11::to_string(input2->info()->quantization_info().offset)); build_opts.emplace("-DSCALE_IN1=" + float_to_string_with_full_precision(input1->info()->quantization_info().scale)); build_opts.emplace("-DSCALE_IN2=" + float_to_string_with_full_precision(input2->info()->quantization_info().scale)); kernel_name += "_quantized"; } // Create kernel _kernel = static_cast(CLKernelLibrary::get().create_kernel(kernel_name, build_opts)); ICLKernel::configure_internal(win_config.second); // Set config_id for enabling LWS tuning _config_id = kernel_name; _config_id += "_"; _config_id += lower_string(string_from_data_type(input1->info()->data_type())); _config_id += "_"; _config_id += support::cpp11::to_string(output->info()->dimension(0)); _config_id += "_"; _config_id += support::cpp11::to_string(output->info()->dimension(1)); _config_id += lower_string(string_from_data_layout(input1->info()->data_layout())); } Status CLComparisonKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ComparisonOperation operation) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output, operation)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(*input1->clone(), *input2->clone(), *output->clone()).first); return Status{}; } void CLComparisonKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); const TensorShape &in_shape1 = _input1->info()->tensor_shape(); const TensorShape &in_shape2 = _input2->info()->tensor_shape(); const TensorShape &out_shape = _output->info()->tensor_shape(); bool can_collapse = true; const bool is_vector = in_shape1.num_dimensions() == 1 || in_shape2.num_dimensions() == 1; if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1 && !is_vector) { can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ); for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); d++) { can_collapse = (in_shape1[d] == in_shape2[d]); } } bool has_collapsed = false; Window collapsed = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window; const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1; const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2; Window slice = collapsed.first_slice_window_3D(); Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed); Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed); do { unsigned int idx = 0; add_3D_tensor_argument(idx, _input1, slice_input1); add_3D_tensor_argument(idx, _input2, slice_input2); add_3D_tensor_argument(idx, _output, slice); enqueue(queue, *this, slice, lws_hint()); collapsed.slide_window_slice_3D(slice_input1); collapsed.slide_window_slice_3D(slice_input2); } while(collapsed.slide_window_slice_3D(slice)); } BorderSize CLComparisonKernel::border_size() const { const int num_elems_processed_per_iteration = calculate_num_elems_processed_per_iteration(*_input1->info()); const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0)); const unsigned int border = std::min(num_elems_processed_per_iteration - 1U, replicateSize); return BorderSize(0, border, 0, 0); } } // namespace arm_compute