/* * Copyright (c) 2016-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLChannelCombineKernel.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/ICLMultiImage.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/MultiImageInfo.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include namespace arm_compute { namespace { constexpr unsigned int num_elems_processed_per_iteration = 16; } // namespace CLChannelCombineKernel::CLChannelCombineKernel() : _planes{ { nullptr } }, _output(nullptr), _output_multi(nullptr), _x_subsampling{ { 1, 1, 1 } }, _y_subsampling{ { 1, 1, 1 } } { } void CLChannelCombineKernel::configure(const ICLTensor *plane0, const ICLTensor *plane1, const ICLTensor *plane2, const ICLTensor *plane3, ICLTensor *output) { configure(CLKernelLibrary::get().get_compile_context(), plane0, plane1, plane2, plane3, output); } void CLChannelCombineKernel::configure(const CLCompileContext &compile_context, const ICLTensor *plane0, const ICLTensor *plane1, const ICLTensor *plane2, const ICLTensor *plane3, ICLTensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane0); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane1); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane2); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(output); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::RGB888, Format::RGBA8888, Format::YUYV422, Format::UYVY422); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8); const Format output_format = output->info()->format(); // Check if horizontal dimension of Y plane is even and validate horizontal sub-sampling dimensions for U and V planes if(Format::YUYV422 == output_format || Format::UYVY422 == output_format) { // Validate Y plane of input and output ARM_COMPUTE_ERROR_ON_TENSORS_NOT_EVEN(output_format, plane0, output); // Validate U and V plane of the input ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), plane1, plane2); } _planes[0] = plane0; _planes[1] = plane1; _planes[2] = plane2; _planes[3] = nullptr; // Validate the last input tensor only for RGBA format if(Format::RGBA8888 == output_format) { ARM_COMPUTE_ERROR_ON_NULLPTR(plane3); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane3); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane3, Format::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane3, 1, DataType::U8); _planes[3] = plane3; } _output = output; _output_multi = nullptr; // Half the processed elements for U and V channels due to horizontal sub-sampling of 2 if(Format::YUYV422 == output_format || Format::UYVY422 == output_format) { _x_subsampling[1] = 2; _x_subsampling[2] = 2; } // Create kernel std::string kernel_name = "channel_combine_" + string_from_format(output_format); _kernel = create_kernel(compile_context, kernel_name); // Configure window Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal plane0_access(plane0->info(), 0, num_elems_processed_per_iteration); AccessWindowRectangle plane1_access(plane1->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]); AccessWindowRectangle plane2_access(plane2->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]); AccessWindowHorizontal plane3_access(plane3 == nullptr ? nullptr : plane3->info(), 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration); update_window_and_padding(win, plane0_access, plane1_access, plane2_access, plane3_access, output_access); ValidRegion valid_region = intersect_valid_regions(plane0->info()->valid_region(), plane1->info()->valid_region(), plane2->info()->valid_region()); if(plane3 != nullptr) { valid_region = intersect_valid_regions(plane3->info()->valid_region(), valid_region); } output_access.set_valid_region(win, ValidRegion(valid_region.anchor, output->info()->tensor_shape())); ICLKernel::configure_internal(win); } void CLChannelCombineKernel::configure(const ICLImage *plane0, const ICLImage *plane1, const ICLImage *plane2, ICLMultiImage *output) { configure(CLKernelLibrary::get().get_compile_context(), plane0, plane1, plane2, output); } void CLChannelCombineKernel::configure(const CLCompileContext &compile_context, const ICLImage *plane0, const ICLImage *plane1, const ICLImage *plane2, ICLMultiImage *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane0); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane1); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane2); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::NV12, Format::NV21, Format::IYUV, Format::YUV444); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8); const Format output_format = output->info()->format(); // Validate shape of Y plane to be even and shape of sub-sampling dimensions for U and V planes // Perform validation only for formats which require sub-sampling. if(Format::YUV444 != output_format) { // Validate Y plane of input and output ARM_COMPUTE_ERROR_ON_TENSORS_NOT_EVEN(output_format, plane0, output->plane(0)); // Validate U and V plane of the input ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), plane1, plane2); // Validate second plane U (NV12 and NV21 have a UV88 combined plane while IYUV has only the U plane) // MultiImage generates the correct tensor shape but also check in case the tensor shape of planes was changed to a wrong size ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), output->plane(1)); // Validate the last plane V of format IYUV if(Format::IYUV == output_format) { // Validate Y plane of the output ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), output->plane(2)); } } // Set input tensors _planes[0] = plane0; _planes[1] = plane1; _planes[2] = plane2; _planes[3] = nullptr; // Set output tensor _output = nullptr; _output_multi = output; bool has_two_planars = false; // Set sub-sampling parameters for each plane std::string kernel_name; std::set build_opts; if(Format::NV12 == output_format || Format::NV21 == output_format) { _x_subsampling = { { 1, 2, 2 } }; _y_subsampling = { { 1, 2, 2 } }; kernel_name = "channel_combine_NV"; build_opts.emplace(Format::NV12 == output_format ? "-DNV12" : "-DNV21"); has_two_planars = true; } else { if(Format::IYUV == output_format) { _x_subsampling = { { 1, 2, 2 } }; _y_subsampling = { { 1, 2, 2 } }; } kernel_name = "copy_planes_3p"; build_opts.emplace(Format::IYUV == output_format ? "-DIYUV" : "-DYUV444"); } // Create kernel _kernel = create_kernel(compile_context, kernel_name, build_opts); // Configure window Window win = calculate_max_window(*plane0->info(), Steps(num_elems_processed_per_iteration)); AccessWindowRectangle input_plane0_access(plane0->info(), 0, 0, num_elems_processed_per_iteration, 1.f); AccessWindowRectangle input_plane1_access(plane1->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]); AccessWindowRectangle input_plane2_access(plane2->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]); AccessWindowRectangle output_plane0_access(output->plane(0)->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f, 1.f / _y_subsampling[1]); AccessWindowRectangle output_plane1_access(output->plane(1)->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]); AccessWindowRectangle output_plane2_access(has_two_planars ? nullptr : output->plane(2)->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]); update_window_and_padding(win, input_plane0_access, input_plane1_access, input_plane2_access, output_plane0_access, output_plane1_access, output_plane2_access); ValidRegion plane0_valid_region = plane0->info()->valid_region(); ValidRegion output_plane1_region = has_two_planars ? intersect_valid_regions(plane1->info()->valid_region(), plane2->info()->valid_region()) : plane2->info()->valid_region(); output_plane0_access.set_valid_region(win, ValidRegion(plane0_valid_region.anchor, output->plane(0)->info()->tensor_shape())); output_plane1_access.set_valid_region(win, ValidRegion(output_plane1_region.anchor, output->plane(1)->info()->tensor_shape())); output_plane2_access.set_valid_region(win, ValidRegion(plane2->info()->valid_region().anchor, output->plane(2)->info()->tensor_shape())); ICLKernel::configure_internal(win); } void CLChannelCombineKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); Window slice = window.first_slice_window_2D(); slice.set_dimension_step(Window::DimY, 1); do { // Subsampling in plane 1 Window win_sub_plane1(slice); win_sub_plane1.set(Window::DimX, Window::Dimension(win_sub_plane1.x().start() / _x_subsampling[1], win_sub_plane1.x().end() / _x_subsampling[1], win_sub_plane1.x().step() / _x_subsampling[1])); win_sub_plane1.set(Window::DimY, Window::Dimension(win_sub_plane1.y().start() / _y_subsampling[1], win_sub_plane1.y().end() / _y_subsampling[1], 1)); // Subsampling in plane 2 Window win_sub_plane2(slice); win_sub_plane2.set(Window::DimX, Window::Dimension(win_sub_plane2.x().start() / _x_subsampling[2], win_sub_plane2.x().end() / _x_subsampling[2], win_sub_plane2.x().step() / _x_subsampling[2])); win_sub_plane2.set(Window::DimY, Window::Dimension(win_sub_plane2.y().start() / _y_subsampling[2], win_sub_plane2.y().end() / _y_subsampling[2], 1)); unsigned int idx = 0; // Set inputs add_2D_tensor_argument(idx, _planes[0], slice); add_2D_tensor_argument(idx, _planes[1], win_sub_plane1); add_2D_tensor_argument(idx, _planes[2], win_sub_plane2); add_2D_tensor_argument_if((nullptr != _planes[3]), idx, _planes[3], slice); // Set outputs if(nullptr != _output) // Single planar output { add_2D_tensor_argument(idx, _output, slice); } else // Multi-planar output { // Reduce slice in case of subsampling to avoid out-of bounds access slice.set(Window::DimY, Window::Dimension(slice.y().start() / _y_subsampling[1], slice.y().end() / _y_subsampling[1], 1)); add_2D_tensor_argument(idx, _output_multi->cl_plane(0), slice); add_2D_tensor_argument(idx, _output_multi->cl_plane(1), win_sub_plane1); add_2D_tensor_argument_if((3 == num_planes_from_format(_output_multi->info()->format())), idx, _output_multi->cl_plane(2), win_sub_plane2); _kernel.setArg(idx++, slice.y().end()); } enqueue(queue, *this, slice, lws_hint()); } while(window.slide_window_slice_2D(slice)); } } // namespace arm_compute