/* * Copyright (c) 2018-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLBoundingBoxTransformKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/CLValidate.h" #include "arm_compute/core/CL/ICLArray.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Window.h" #include "support/StringSupport.h" namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *boxes, const ITensorInfo *pred_boxes, const ITensorInfo *deltas, const BoundingBoxTransformInfo &info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(boxes, pred_boxes, deltas); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(boxes); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(boxes, DataType::QASYMM16, DataType::F32, DataType::F16); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(deltas, DataType::QASYMM8, DataType::F32, DataType::F16); ARM_COMPUTE_RETURN_ERROR_ON(deltas->tensor_shape()[1] != boxes->tensor_shape()[1]); ARM_COMPUTE_RETURN_ERROR_ON(deltas->tensor_shape()[0] % 4 != 0); ARM_COMPUTE_RETURN_ERROR_ON(boxes->tensor_shape()[0] != 4); ARM_COMPUTE_RETURN_ERROR_ON(deltas->num_dimensions() > 2); ARM_COMPUTE_RETURN_ERROR_ON(boxes->num_dimensions() > 2); const bool is_qasymm16 = boxes->data_type() == DataType::QASYMM16; if(is_qasymm16) { const UniformQuantizationInfo boxes_qinfo = boxes->quantization_info().uniform(); ARM_COMPUTE_RETURN_ERROR_ON(boxes_qinfo.scale != 0.125f); ARM_COMPUTE_RETURN_ERROR_ON(boxes_qinfo.offset != 0); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(deltas, DataType::QASYMM8); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(boxes, deltas); } if(pred_boxes->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(pred_boxes->tensor_shape(), deltas->tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(pred_boxes, boxes); ARM_COMPUTE_RETURN_ERROR_ON(pred_boxes->num_dimensions() > 2); if(is_qasymm16) { const UniformQuantizationInfo pred_boxes_qinfo = pred_boxes->quantization_info().uniform(); ARM_COMPUTE_RETURN_ERROR_ON(pred_boxes_qinfo.scale != 0.125f); ARM_COMPUTE_RETURN_ERROR_ON(pred_boxes_qinfo.offset != 0); } } ARM_COMPUTE_RETURN_ERROR_ON(info.scale() <= 0); return Status{}; } } // namespace CLBoundingBoxTransformKernel::CLBoundingBoxTransformKernel() : _boxes(nullptr), _pred_boxes(nullptr), _deltas(nullptr) { } void CLBoundingBoxTransformKernel::configure(const ICLTensor *boxes, ICLTensor *pred_boxes, const ICLTensor *deltas, const BoundingBoxTransformInfo &info) { configure(CLKernelLibrary::get().get_compile_context(), boxes, pred_boxes, deltas, info); } void CLBoundingBoxTransformKernel::configure(const CLCompileContext &compile_context, const ICLTensor *boxes, ICLTensor *pred_boxes, const ICLTensor *deltas, const BoundingBoxTransformInfo &info) { ARM_COMPUTE_ERROR_ON_NULLPTR(boxes, pred_boxes, deltas); auto_init_if_empty(*pred_boxes->info(), deltas->info()->clone()->set_data_type(boxes->info()->data_type()).set_quantization_info(boxes->info()->quantization_info())); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(boxes->info(), pred_boxes->info(), deltas->info(), info)); // Set instance variables _boxes = boxes; _pred_boxes = pred_boxes; _deltas = deltas; // Get image height and widht (rescaled) const int img_h = floor(info.img_height() / info.scale() + 0.5f); const int img_w = floor(info.img_width() / info.scale() + 0.5f); const bool is_quantized = is_data_type_quantized(boxes->info()->data_type()); // Set build options CLBuildOptions build_opts; build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(boxes->info()->data_type())); build_opts.add_option("-DWEIGHT_X=" + float_to_string_with_full_precision(info.weights()[0])); build_opts.add_option("-DWEIGHT_Y=" + float_to_string_with_full_precision(info.weights()[1])); build_opts.add_option("-DWEIGHT_W=" + float_to_string_with_full_precision(info.weights()[2])); build_opts.add_option("-DWEIGHT_H=" + float_to_string_with_full_precision(info.weights()[3])); build_opts.add_option("-DBBOX_XFORM_CLIP=" + float_to_string_with_full_precision(info.bbox_xform_clip())); build_opts.add_option("-DIMG_WIDTH=" + support::cpp11::to_string(img_w)); build_opts.add_option("-DIMG_HEIGHT=" + support::cpp11::to_string(img_h)); build_opts.add_option("-DBOX_FIELDS=" + support::cpp11::to_string(4)); build_opts.add_option("-DSCALE_BEFORE=" + float_to_string_with_full_precision(info.scale())); build_opts.add_option_if(info.apply_scale(), "-DSCALE_AFTER=" + float_to_string_with_full_precision(info.scale())); build_opts.add_option_if(info.correct_transform_coords(), "-DOFFSET=1"); if(is_quantized) { build_opts.add_option("-DDATA_TYPE_DELTAS=" + get_cl_type_from_data_type(deltas->info()->data_type())); const UniformQuantizationInfo boxes_qinfo = boxes->info()->quantization_info().uniform(); const UniformQuantizationInfo deltas_qinfo = deltas->info()->quantization_info().uniform(); const UniformQuantizationInfo pred_boxes_qinfo = pred_boxes->info()->quantization_info().uniform(); build_opts.add_option("-DOFFSET_BOXES=" + float_to_string_with_full_precision(boxes_qinfo.offset)); build_opts.add_option("-DSCALE_BOXES=" + float_to_string_with_full_precision(boxes_qinfo.scale)); build_opts.add_option("-DOFFSET_DELTAS=" + float_to_string_with_full_precision(deltas_qinfo.offset)); build_opts.add_option("-DSCALE_DELTAS=" + float_to_string_with_full_precision(deltas_qinfo.scale)); build_opts.add_option("-DOFFSET_PRED_BOXES=" + float_to_string_with_full_precision(pred_boxes_qinfo.offset)); build_opts.add_option("-DSCALE_PRED_BOXES=" + float_to_string_with_full_precision(pred_boxes_qinfo.scale)); } // Create kernel const std::string kernel_name = (is_quantized) ? "bounding_box_transform_quantized" : "bounding_box_transform"; _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); // Since the number of columns is a multiple of 4 by definition, we don't need to pad the tensor const unsigned int num_elems_processed_per_iteration = 4; Window win = calculate_max_window(*deltas->info(), Steps(num_elems_processed_per_iteration)); ICLKernel::configure_internal(win); } Status CLBoundingBoxTransformKernel::validate(const ITensorInfo *boxes, const ITensorInfo *pred_boxes, const ITensorInfo *deltas, const BoundingBoxTransformInfo &info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(boxes, pred_boxes, deltas, info)); return Status{}; } void CLBoundingBoxTransformKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); Window slice = window.first_slice_window_2D(); // Set arguments unsigned int idx = 0; add_1D_tensor_argument(idx, _boxes, slice); add_2D_tensor_argument(idx, _pred_boxes, slice); add_2D_tensor_argument(idx, _deltas, slice); // Note that we don't need to loop over the slices, as we are sure that we are dealing with all 2D tensors enqueue(queue, *this, slice, lws_hint()); } } // namespace arm_compute