/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLActivationLayerKernel.h" #include "arm_compute/core/CL/CLCoreRuntimeContext.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLValidate.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/helpers/float_ops.h" #include "support/ToolchainSupport.h" #include #include using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::QASYMM8, DataType::QSYMM16, DataType::F16, DataType::F32); static std::set quantized_supported_activations = { ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::LOGISTIC, ActivationLayerInfo::ActivationFunction::TANH }; const DataType data_type = input->data_type(); const QuantizationInfo &oq_info = (output != nullptr) ? output->quantization_info() : input->quantization_info(); const ActivationLayerInfo::ActivationFunction f_act = act_info.activation(); ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized(data_type) && (quantized_supported_activations.count(f_act) == 0), "For Quantized data type only tanh, logistic, relu and lower/upper bounded relu are supported"); ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 128.f, 128))); ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 256.f, 0))); ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 32768.f, 0))); ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 32768.f, 0))); // Checks performed when output is configured if((output != nullptr) && (output->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output) { if(output != nullptr) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output, *input); } const unsigned int num_elems_processed_per_iteration = 16 / input->element_size(); Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); bool window_changed = false; if(output != nullptr) { AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); window_changed = update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, input->valid_region()); } else { window_changed = update_window_and_padding(win, AccessWindowHorizontal(input, 0, num_elems_processed_per_iteration)); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace CLActivationLayerKernel::CLActivationLayerKernel(CLCoreRuntimeContext *ctx) : _input(nullptr), _output(nullptr), _run_in_place(false), _ctx(ctx) { } void CLActivationLayerKernel::configure(ICLTensor *input, ICLTensor *output, ActivationLayerInfo act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input); _run_in_place = (output == nullptr) || (output == input); if(output != nullptr) { // Output auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), *input->info()->clone()); } ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (output != nullptr) ? output->info() : nullptr, act_info)); const unsigned int num_elems_processed_per_iteration = 16 / input->info()->element_size(); const DataType dt = input->info()->data_type(); float a_const = act_info.a(); float b_const = act_info.b(); int a_const_int = 0; int b_const_int = 0; const ActivationLayerInfo::ActivationFunction f_act = act_info.activation(); const bool is_quantized = is_data_type_quantized(dt); const bool perform_activation_in_float = (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) || (f_act == ActivationLayerInfo::ActivationFunction::TANH); // Create quantized version of constants a, b if needed if(dt == DataType::QASYMM8) { const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform(); a_const_int = quantize_qasymm8(a_const, iq_info); b_const_int = quantize_qasymm8(b_const, iq_info); } else if(dt == DataType::QSYMM16) { const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform(); a_const_int = quantize_qsymm16(a_const, iq_info); b_const_int = quantize_qsymm16(b_const, iq_info); } // Set build options CLBuildOptions build_opts; build_opts.add_option_if(perform_activation_in_float, "-DFLOAT_DOMAIN"); build_opts.add_option_if(_run_in_place, "-DIN_PLACE"); build_opts.add_option(("-DACT=" + lower_string(string_from_activation_func(f_act)))); build_opts.add_option(("-DDATA_TYPE=" + get_cl_type_from_data_type(dt))); build_opts.add_option(("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration))); // Set A, B constants in build options if(is_quantized && !perform_activation_in_float) { build_opts.add_option(("-DA_VAL=" + support::cpp11::to_string(a_const_int))); build_opts.add_option(("-DB_VAL=" + support::cpp11::to_string(b_const_int))); } else { build_opts.add_option(("-DA_VAL=" + float_to_string_with_full_precision(a_const))); build_opts.add_option(("-DB_VAL=" + float_to_string_with_full_precision(b_const))); } // Set quantization info build options if(is_quantized) { const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform(); // Quantized value of 0 corresponds to the offset o1 build_opts.add_option(("-DCONST_0=" + (is_data_type_quantized_asymmetric(dt) ? support::cpp11::to_string(iq_info.offset) : "0"))); build_opts.add_option(("-DS1_VAL=" + float_to_string_with_full_precision(iq_info.scale))); build_opts.add_option_if(is_data_type_quantized_asymmetric(dt), "-DO1_VAL=" + support::cpp11::to_string(iq_info.offset)); // Set scale and offset of the input and output if they have different quantization info if(output != nullptr) { const UniformQuantizationInfo oq_info = output->info()->quantization_info().uniform(); if(iq_info != oq_info) { build_opts.add_option(("-DS2_VAL=" + float_to_string_with_full_precision(oq_info.scale))); build_opts.add_option_if(is_data_type_quantized_asymmetric(dt), "-DO2_VAL=" + support::cpp11::to_string(oq_info.offset)); } } } // Create kernel std::string kernel_name = std::string("activation_layer"); if(is_quantized) { kernel_name += perform_activation_in_float ? std::string("_quant_f32") : std::string("_quant"); } _kernel = create_opencl_kernel(_ctx, kernel_name, build_opts); // Make sure _kernel is initialized before calling the parent's configure _input = input; _output = output; // Configure kernel window auto win_config = validate_and_configure_window(input->info(), (_run_in_place) ? nullptr : output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); ICLKernel::configure_internal(win_config.second); // Set config_id for enabling LWS tuning _config_id = "activation_layer_"; _config_id += lower_string(string_from_data_type(dt)); _config_id += "_"; _config_id += support::cpp11::to_string(input->info()->dimension(0)); _config_id += "_"; _config_id += support::cpp11::to_string(input->info()->dimension(1)); } Status CLActivationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ActivationLayerInfo &act_info) { const bool run_in_place = (output == nullptr) || (output == input); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, act_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), (run_in_place) ? nullptr : output->clone().get()).first); return Status{}; } void CLActivationLayerKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ); Window slice = collapsed.first_slice_window_3D(); do { unsigned int idx = 0; add_3D_tensor_argument(idx, _input, slice); if(!_run_in_place) { add_3D_tensor_argument(idx, _output, slice); } enqueue(queue, *this, slice, lws_hint()); } while(collapsed.slide_window_slice_3D(slice)); }