/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(OUTPUT_TILE_W) && defined(OUTPUT_TILE_H) /** This OpenCL kernel computes the input transform when the kernel size is 3x3/3x1 or 1x3 and the output tile is 2x2/2x1 or 1x2 * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2 * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2 * @note If this kernel is used to perform Winograd input transform 3x1, -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time * @note If this kernel is used to perform Winograd input transform 1x3, -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_2x2_3x3_stepz1_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { int x = get_global_id(0); int y = get_global_id(1); int z = get_global_id(2); // Compute input address __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * OUTPUT_TILE_W * sizeof(float) + y * OUTPUT_TILE_H * src_stride_y + z * src_stride_z; src_addr = src_addr - ((int)PAD_LEFT * sizeof(float)) - ((int)PAD_TOP * src_stride_y); #if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) float4 in_row0 = vload4(0, (__global float *)(src_addr)); #elif defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // !defined(WINOGRAD_FILTER_TRANSFORM_HORIZONTAL) float4 in_row0 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)), *((__global float *)(src_addr + 1 * src_stride_y)), *((__global float *)(src_addr + 2 * src_stride_y)), *((__global float *)(src_addr + 3 * src_stride_y))); #else // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float4 in_row0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); float4 in_row1 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); float4 in_row2 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); float4 in_row3 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); #endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float4 tmp0 = in_row0; #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) tmp0 -= in_row2; #endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float out00 = tmp0.s0 - tmp0.s2; float out01 = tmp0.s1 + tmp0.s2; float out02 = tmp0.s2 - tmp0.s1; float out03 = tmp0.s1 - tmp0.s3; #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float4 tmp1 = in_row1 + in_row2; float4 tmp2 = in_row2 - in_row1; float4 tmp3 = in_row1 - in_row3; float out10 = tmp1.s0 - tmp1.s2; float out11 = tmp1.s1 + tmp1.s2; float out12 = tmp1.s2 - tmp1.s1; float out13 = tmp1.s1 - tmp1.s3; float out20 = tmp2.s0 - tmp2.s2; float out21 = tmp2.s1 + tmp2.s2; float out22 = tmp2.s2 - tmp2.s1; float out23 = tmp2.s1 - tmp2.s3; float out30 = tmp3.s0 - tmp3.s2; float out31 = tmp3.s1 + tmp3.s2; float out32 = tmp3.s2 - tmp3.s1; float out33 = tmp3.s1 - tmp3.s3; #endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * sizeof(float) + (x + y * (int)NUM_TILES_X) * dst_stride_y; *((__global float *)(dst_addr + 0 * dst_stride_z)) = out00; // in_row0.s0; out00; *((__global float *)(dst_addr + 1 * dst_stride_z)) = out01; // in_row0.s1; out01; *((__global float *)(dst_addr + 2 * dst_stride_z)) = out02; // in_row0.s2; out02; *((__global float *)(dst_addr + 3 * dst_stride_z)) = out03; // in_row0.s3; out03; #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) *((__global float *)(dst_addr + 4 * dst_stride_z)) = out10; *((__global float *)(dst_addr + 5 * dst_stride_z)) = out11; *((__global float *)(dst_addr + 6 * dst_stride_z)) = out12; *((__global float *)(dst_addr + 7 * dst_stride_z)) = out13; *((__global float *)(dst_addr + 8 * dst_stride_z)) = out20; *((__global float *)(dst_addr + 9 * dst_stride_z)) = out21; *((__global float *)(dst_addr + 10 * dst_stride_z)) = out22; *((__global float *)(dst_addr + 11 * dst_stride_z)) = out23; *((__global float *)(dst_addr + 12 * dst_stride_z)) = out30; *((__global float *)(dst_addr + 13 * dst_stride_z)) = out31; *((__global float *)(dst_addr + 14 * dst_stride_z)) = out32; *((__global float *)(dst_addr + 15 * dst_stride_z)) = out33; #endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) } /** This OpenCL kernel computes the input transform when the kernel size is 3x3/3x1 or 1x3, the output tile is 2x2/2x1 or 1x2 and the number of channels is multiple of 2 * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2 * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2 * @note If this kernel is used to perform Winograd input transform 3x1, -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time * @note If this kernel is used to perform Winograd input transform 1x3, -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_2x2_3x3_stepz2_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { int x = get_global_id(0); int y = get_global_id(1); int z = get_global_id(2) * 2; // Compute input address __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * OUTPUT_TILE_W * sizeof(float) + y * OUTPUT_TILE_H * src_stride_y + z * src_stride_z; src_addr = src_addr - ((int)PAD_LEFT * sizeof(float)) - ((int)PAD_TOP * src_stride_y); #if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) float4 in_row0 = vload4(0, (__global float *)(src_addr)); #elif defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // !defined(WINOGRAD_FILTER_TRANSFORM_HORIZONTAL) float4 in_row0 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)), *((__global float *)(src_addr + 1 * src_stride_y)), *((__global float *)(src_addr + 2 * src_stride_y)), *((__global float *)(src_addr + 3 * src_stride_y))); #else // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float4 in_row0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); float4 in_row1 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); float4 in_row2 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); float4 in_row3 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); #endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) src_addr += src_stride_z; #if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) float4 in_row4 = vload4(0, (__global float *)(src_addr)); #elif defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // !defined(WINOGRAD_FILTER_TRANSFORM_HORIZONTAL) float4 in_row4 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)), *((__global float *)(src_addr + 1 * src_stride_y)), *((__global float *)(src_addr + 2 * src_stride_y)), *((__global float *)(src_addr + 3 * src_stride_y))); #else // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float4 in_row4 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); float4 in_row5 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); float4 in_row6 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); float4 in_row7 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); #endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float4 tmp0 = in_row0; float4 tmp4 = in_row4; #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) tmp0 -= in_row2; tmp4 -= in_row6; #endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float2 out00 = (float2)(tmp0.s0 - tmp0.s2, tmp4.s0 - tmp4.s2); float2 out01 = (float2)(tmp0.s1 + tmp0.s2, tmp4.s1 + tmp4.s2); float2 out02 = (float2)(tmp0.s2 - tmp0.s1, tmp4.s2 - tmp4.s1); float2 out03 = (float2)(tmp0.s1 - tmp0.s3, tmp4.s1 - tmp4.s3); #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float4 tmp1 = in_row1 + in_row2; float4 tmp2 = in_row2 - in_row1; float4 tmp3 = in_row1 - in_row3; float4 tmp5 = in_row5 + in_row6; float4 tmp6 = in_row6 - in_row5; float4 tmp7 = in_row5 - in_row7; float2 out10 = (float2)(tmp1.s0 - tmp1.s2, tmp5.s0 - tmp5.s2); float2 out11 = (float2)(tmp1.s1 + tmp1.s2, tmp5.s1 + tmp5.s2); float2 out12 = (float2)(tmp1.s2 - tmp1.s1, tmp5.s2 - tmp5.s1); float2 out13 = (float2)(tmp1.s1 - tmp1.s3, tmp5.s1 - tmp5.s3); float2 out20 = (float2)(tmp2.s0 - tmp2.s2, tmp6.s0 - tmp6.s2); float2 out21 = (float2)(tmp2.s1 + tmp2.s2, tmp6.s1 + tmp6.s2); float2 out22 = (float2)(tmp2.s2 - tmp2.s1, tmp6.s2 - tmp6.s1); float2 out23 = (float2)(tmp2.s1 - tmp2.s3, tmp6.s1 - tmp6.s3); float2 out30 = (float2)(tmp3.s0 - tmp3.s2, tmp7.s0 - tmp7.s2); float2 out31 = (float2)(tmp3.s1 + tmp3.s2, tmp7.s1 + tmp7.s2); float2 out32 = (float2)(tmp3.s2 - tmp3.s1, tmp7.s2 - tmp7.s1); float2 out33 = (float2)(tmp3.s1 - tmp3.s3, tmp7.s1 - tmp7.s3); #endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * sizeof(float) + (x + y * (int)NUM_TILES_X) * dst_stride_y; vstore2(out00, 0, (__global float *)(dst_addr + 0 * dst_stride_z)); vstore2(out01, 0, (__global float *)(dst_addr + 1 * dst_stride_z)); vstore2(out02, 0, (__global float *)(dst_addr + 2 * dst_stride_z)); vstore2(out03, 0, (__global float *)(dst_addr + 3 * dst_stride_z)); #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) vstore2(out10, 0, (__global float *)(dst_addr + 4 * dst_stride_z)); vstore2(out11, 0, (__global float *)(dst_addr + 5 * dst_stride_z)); vstore2(out12, 0, (__global float *)(dst_addr + 6 * dst_stride_z)); vstore2(out13, 0, (__global float *)(dst_addr + 7 * dst_stride_z)); vstore2(out20, 0, (__global float *)(dst_addr + 8 * dst_stride_z)); vstore2(out21, 0, (__global float *)(dst_addr + 9 * dst_stride_z)); vstore2(out22, 0, (__global float *)(dst_addr + 10 * dst_stride_z)); vstore2(out23, 0, (__global float *)(dst_addr + 11 * dst_stride_z)); vstore2(out30, 0, (__global float *)(dst_addr + 12 * dst_stride_z)); vstore2(out31, 0, (__global float *)(dst_addr + 13 * dst_stride_z)); vstore2(out32, 0, (__global float *)(dst_addr + 14 * dst_stride_z)); vstore2(out33, 0, (__global float *)(dst_addr + 15 * dst_stride_z)); #endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) } /** This OpenCL kernel computes the input transform when the output tile is 4x4, the filter size 3x3 and the data layout is NCHW * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2 * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2 * @note If this kernel is used to perform Winograd input transform 3x1, -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time * @note If this kernel is used to perform Winograd input transform 1x3, -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_4x4_3x3_stepz1_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { int x = get_global_id(0); int y = get_global_id(1); int z = get_global_id(2); // Compute input address __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * OUTPUT_TILE_W * sizeof(float) + y * OUTPUT_TILE_H * src_stride_y + z * src_stride_z; src_addr = src_addr - ((int)PAD_LEFT * sizeof(float)) - ((int)PAD_TOP * src_stride_y); #if defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // Row0 float4 d00 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)), *((__global float *)(src_addr + 1 * src_stride_y)), *((__global float *)(src_addr + 2 * src_stride_y)), *((__global float *)(src_addr + 3 * src_stride_y))); float2 d01 = (float2)(*((__global float *)(src_addr + 4 * src_stride_y)), *((__global float *)(src_addr + 5 * src_stride_y))); #else // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // Row0 float4 d00 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); float2 d01 = vload2(2, (__global float *)(src_addr + 0 * src_stride_y)); #endif // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float out0 = 0.0f; float out1 = 0.0f; float out2 = 0.0f; float out3 = 0.0f; float out4 = 0.0f; float out5 = 0.0f; // Channels [0, 5]: [out00, out01, out02, out03, out04, out05] out0 += 16.0f * d00.s0 - 20.0f * d00.s2 + 4.0f * d01.s0; out1 += -16.0f * d00.s1 - 16.0f * d00.s2 + 4.0f * d00.s3 + 4.0f * d01.s0; out2 += 16.0f * d00.s1 - 16.0f * d00.s2 - 4.0f * d00.s3 + 4.0f * d01.s0; out3 += -8.0f * d00.s1 - 4.0f * d00.s2 + 8.0f * d00.s3 + 4.0f * d01.s0; out4 += 8.0f * d00.s1 - 4.0f * d00.s2 - 8.0f * d00.s3 + 4.0f * d01.s0; out5 += 16.0f * d00.s1 - 20.0f * d00.s3 + 4.0f * d01.s1; #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // Row4 float4 d40 = vload4(0, (__global float *)(src_addr + 4 * src_stride_y)); float2 d41 = vload2(2, (__global float *)(src_addr + 4 * src_stride_y)); // k0, k1, k2, k3, k4, k5 are common terms for row0, row1, row2, row3 and row4 float k0 = d41.s0; float k1 = d41.s0; float k2 = d41.s0; float k3 = d41.s0; float k4 = d41.s0; float k5 = 0.0f; k0 += 4.0f * d40.s0 - 5.0f * d40.s2; k1 += -4.0f * d40.s1 - 4.0f * d40.s2 + d40.s3; k2 += 4.0f * d40.s1 - 4.0f * d40.s2 - d40.s3; k3 += -2.0f * d40.s1 + 2.0f * d40.s3 - d40.s2; k4 += 2.0f * d40.s1 - 2.0f * d40.s3 - d40.s2; k5 += 4.0f * d40.s1 - 5.0f * d40.s3 + d41.s1; out0 += k0; out1 += k1; out2 += k2; out3 += k3; out4 += k4; out5 += k5; // Row2 float4 d20 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); float2 d21 = vload2(2, (__global float *)(src_addr + 2 * src_stride_y)); out0 += -20.0f * d20.s0 + 25.0f * d20.s2 - 5.0f * d21.s0; out1 += +20.0f * d20.s1 + 20.0f * d20.s2 - 5.0f * d20.s3 - 5.0f * d21.s0; out2 += -20.0f * d20.s1 + 20.0f * d20.s2 + 5.0f * d20.s3 - 5.0f * d21.s0; out3 += +10.0f * d20.s1 + 5.0f * d20.s2 - 10.0f * d20.s3 - 5.0f * d21.s0; out4 += -10.0f * d20.s1 + 5.0f * d20.s2 + 10.0f * d20.s3 - 5.0f * d21.s0; out5 += -20.0f * d20.s1 + 25.0f * d20.s3 - 5.0f * d21.s1; #endif // #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // Compute destination address __global float *dst_addr = (__global float *)(dst_ptr + dst_offset_first_element_in_bytes + z * sizeof(float) + (x + y * (int)NUM_TILES_X) * dst_stride_y); uint dst_plane_stride = dst_stride_z / sizeof(float); *(dst_addr) = out0; dst_addr += dst_plane_stride; *(dst_addr) = out1; dst_addr += dst_plane_stride; *(dst_addr) = out2; dst_addr += dst_plane_stride; *(dst_addr) = out3; dst_addr += dst_plane_stride; *(dst_addr) = out4; dst_addr += dst_plane_stride; *(dst_addr) = out5; dst_addr += dst_plane_stride; #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) float out6 = k0; float out7 = k1; float out8 = k2; float out9 = k3; float out10 = k4; float out11 = k5; float out12 = k0; float out13 = k1; float out14 = k2; float out15 = k3; float out16 = k4; float out17 = k5; float out18 = k0; float out19 = k1; float out20 = k2; float out21 = k3; float out22 = k4; float out23 = k5; float out24 = k0; float out25 = k1; float out26 = k2; float out27 = k3; float out28 = k4; float out29 = k5; // Row1 float4 d10 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); float2 d11 = vload2(2, (__global float *)(src_addr + 1 * src_stride_y)); // Row3 float4 d30 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); float2 d31 = vload2(2, (__global float *)(src_addr + 3 * src_stride_y)); // Compute common parts for the channels between [6, 29] // Channels [6, 11]: [out10, out11, out12, out13, out14, out15] // Channels [12, 17]: [out20, out21, out22, out23, out24, out25] float part0 = -16.0f * d20.s0 + 20.0f * d20.s2 - 4.0f * d21.s0; float part1 = 16.0f * d10.s0 - 20.0f * d10.s2 + 4.0f * d11.s0 - 4.0f * d30.s0 + 5.0f * d30.s2 - d31.s0; float part2 = 16.0f * d20.s2 - 4.0f * d21.s0; float part3 = 16.0f * d20.s1 - 4.0f * d20.s3; float part4 = 16.0f * d10.s2 - 4.0f * d11.s0 - 4.0f * d30.s2 + d31.s0; float part5 = 16.0f * d10.s1 - 4.0f * d10.s3 - 4.0f * d30.s1 + d30.s3; float part6 = 4.0f * d20.s2 - 4.0f * d21.s0; float part7 = 8.0f * d10.s1 - 8.0f * d10.s3 - 2.0f * d30.s1 + 2.0f * d30.s3; float part8 = 4.0f * d10.s2 - 4.0f * d11.s0 - d30.s2 + d31.s0; float part9 = 8.0f * d20.s1 - 8.0f * d20.s3; float part10 = -16.0f * d20.s1 + 20.0f * d20.s3 - 4.0f * d21.s1; float part11 = -16.0f * d10.s1 + 20.0f * d10.s3 - 4.0f * d11.s1 + 4.0f * d30.s1 - 5.0f * d30.s3 + d31.s1; // Channels [18, 23]: [out30, out31, out32, out33, out34, out35] // Channels [24, 29]: [out40, out41, out42, out43, out44, out45] float part12 = 8.0f * d10.s0 - 10.0f * d10.s2 + 2.0f * d11.s0 - 8.0f * d30.s0 + 10.0f * d30.s2 - 2.0f * d31.s0; float part13 = part0 * 0.25f; // -4.0f * d20.s0 + 5.0f * d20.s2 - d21.s0 float part14 = part2 * 0.25f; // 4.0f * d20.s2 - d21.s0 float part15 = 8.0f * d10.s1 - 2.0f * d10.s3 - 8.0f * d30.s1 + 2.0f * d30.s3; float part16 = 8.0f * d10.s2 - 2.0f * d11.s0 - 8.0f * d30.s2 + 2.0f * d31.s0; float part17 = part3 * 0.25f; // 4.0f * d20.s1 - d20.s3 float part18 = part6 * 0.25f; // d20.s2 - d21.s0 float part19 = 4.0f * d10.s1 - 4.0f * d10.s3 - 4.0f * d30.s1 + 4.0f * d30.s3; float part20 = 2.0f * d10.s2 - 2.0f * d11.s0 - 2.0f * d30.s2 + 2.0f * d31.s0; float part21 = part9 * 0.25f; // 2.0f * (d20.s1 - d20.s3) float part22 = part10 * 0.25f; // - 4.0f * d20.s1 + 5.0f * d20.s3 - d21.s1 float part23 = part11 * 0.5f + 6.0f * d30.s1 - 7.5f * d30.s3 + 1.5f * d31.s1; // - 8.0f * d10.s1 + 10.0f * d10.s3 - 2.0f * d11.s1 + 8.0f * d30.s1 - 10.0f * d30.s3 + 2.0f * d31.s1; out6 += part0 - part1; out12 += part0 + part1; out7 += part2 + part3 + part4 + part5; out8 += part2 - part3 + part4 - part5; out13 += part2 + part3 - part4 - part5; out14 += part2 - part3 - part4 + part5; out9 += part6 + part7 + part8 + part9; out10 += part6 - part7 + part8 - part9; out15 += part6 - part7 - part8 + part9; out16 += part6 + part7 - part8 - part9; out11 += part10 + part11; out17 += part10 - part11; out18 += part13 - part12; out24 += part13 + part12; out19 += part14 + part15 + part16 + part17; out20 += part14 - part15 + part16 - part17; out25 += part14 - part15 - part16 + part17; out26 += part14 + part15 - part16 - part17; out21 += part18 + part19 + part20 + part21; out22 += part18 - part19 + part20 - part21; out27 += part18 - part19 - part20 + part21; out28 += part18 + part19 - part20 - part21; out23 += part22 + part23; out29 += part22 - part23; *(dst_addr) = out6; dst_addr += dst_plane_stride; *(dst_addr) = out7; dst_addr += dst_plane_stride; *(dst_addr) = out8; dst_addr += dst_plane_stride; *(dst_addr) = out9; dst_addr += dst_plane_stride; *(dst_addr) = out10; dst_addr += dst_plane_stride; *(dst_addr) = out11; dst_addr += dst_plane_stride; *(dst_addr) = out12; dst_addr += dst_plane_stride; *(dst_addr) = out13; dst_addr += dst_plane_stride; *(dst_addr) = out14; dst_addr += dst_plane_stride; *(dst_addr) = out15; dst_addr += dst_plane_stride; *(dst_addr) = out16; dst_addr += dst_plane_stride; *(dst_addr) = out17; dst_addr += dst_plane_stride; *(dst_addr) = out18; dst_addr += dst_plane_stride; *(dst_addr) = out19; dst_addr += dst_plane_stride; *(dst_addr) = out20; dst_addr += dst_plane_stride; *(dst_addr) = out21; dst_addr += dst_plane_stride; *(dst_addr) = out22; dst_addr += dst_plane_stride; *(dst_addr) = out23; dst_addr += dst_plane_stride; *(dst_addr) = out24; dst_addr += dst_plane_stride; *(dst_addr) = out25; dst_addr += dst_plane_stride; *(dst_addr) = out26; dst_addr += dst_plane_stride; *(dst_addr) = out27; dst_addr += dst_plane_stride; *(dst_addr) = out28; dst_addr += dst_plane_stride; *(dst_addr) = out29; dst_addr += dst_plane_stride; // Row5 float4 d50 = vload4(0, (__global float *)(src_addr + 5 * src_stride_y)); float2 d51 = vload2(2, (__global float *)(src_addr + 5 * src_stride_y)); // Channels [30, 35] out0 = 16.0f * d10.s0 - 20.0f * d10.s2 - 20.0f * d30.s0 + 25.0f * d30.s2 + 4.0f * d50.s0 - 5.0f * d50.s2 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0; out1 = -16.0f * d10.s1 - 16.0f * d10.s2 + 4.0f * d10.s3 + 20.0f * d30.s1 + 20.0f * d30.s2 - 5.0f * d30.s3 - 4.0f * d50.s1 - 4.0f * d50.s2 + d50.s3 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0; out2 = 16.0f * d10.s1 - 16.0f * d10.s2 - 4.0f * d10.s3 - 20.0f * d30.s1 + 20.0f * d30.s2 + 5.0f * d30.s3 + 4.0f * d50.s1 - 4.0f * d50.s2 - d50.s3 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0; out3 = -8.0f * d10.s1 - 4.0f * d10.s2 + 8.0f * d10.s3 + 10.0f * d30.s1 - 10.0f * d30.s3 + 5.0f * d30.s2 - 2.0f * d50.s1 + 2.0f * d50.s3 - d50.s2 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0; out4 = 8.0f * d10.s1 - 4.0f * d10.s2 - 8.0f * d10.s3 - 10.0f * d30.s1 + 5.0f * d30.s2 + 10.0f * d30.s3 + 2.0f * d50.s1 - 2.0f * d50.s3 - d50.s2 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0; out5 = 16.0f * d10.s1 - 20.0f * d10.s3 + 4.0f * d11.s1 - 20.0f * d30.s1 + 25.0f * d30.s3 - 5.0f * d31.s1 + 4.0f * d50.s1 - 5.0f * d50.s3 + d51.s1; *(dst_addr) = out0; dst_addr += dst_plane_stride; *(dst_addr) = out1; dst_addr += dst_plane_stride; *(dst_addr) = out2; dst_addr += dst_plane_stride; *(dst_addr) = out3; dst_addr += dst_plane_stride; *(dst_addr) = out4; dst_addr += dst_plane_stride; *(dst_addr) = out5; dst_addr += dst_plane_stride; #endif // #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) } #if defined(SRC_DIM_1) && defined(SRC_DIM_2) /** This OpenCL kernel computes the input transform when the output tile is 4x4, the filter size 3x3 and the data layout is NHWC * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note Dimension one of the input tensor (width for NHWC data layout) must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM_1=112) * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112) * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_4x4_3x3_stepz1_nhwc( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { int x = get_global_id(0); int y = get_global_id(1); int z = get_global_id(2); __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * src_stride_x; // Clamp coordinates. This clamp is valid for all rows int4 y_coord0 = (int4)(y * 4) + (int4)(0, 1, 2, 3) - (int4)PAD_LEFT; int2 y_coord1 = (int2)(y * 4) + (int2)(4, 5) - (int2)PAD_LEFT; y_coord0 = clamp(y_coord0, -1, SRC_DIM_1); y_coord1 = clamp(y_coord1, -1, SRC_DIM_1); // Row4 int z_coord = (z * 4) - PAD_TOP + 4; // If z < 0, set y to -1 int4 valid_y0 = select(y_coord0, -1, (int4)z_coord < 0); int2 valid_y1 = select(y_coord1, -1, (int2)z_coord < 0); // If z >= SRC_DIM_2, set y to SRC_DIM_2 valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2); valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2); // Clamp z coordinate z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); float d40 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); float d41 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); float d42 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); float d43 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); float d44 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); float d45 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); float k0 = d44; float k1 = d44; float k2 = d44; float k3 = d44; float k4 = d44; float k5 = (float)0.0f; k0 += 4.0f * d40 - 5.0f * d42; k1 += -4.0f * d41 - 4.0f * d42 + d43; k2 += 4.0f * d41 - 4.0f * d42 - d43; k3 += -2.0f * d41 + 2.0f * d43 - d42; k4 += 2.0f * d41 - 2.0f * d43 - d42; k5 += 4.0f * d41 - 5.0f * d43 + d45; // Row0 z_coord = (z * 4) - PAD_TOP + 0; #if PAD_TOP != 0 valid_y0 = select(y_coord0, -1, (int4)z_coord < 0); valid_y1 = select(y_coord1, -1, (int2)z_coord < 0); valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2); valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); #else // PAD_TOP != 0 valid_y0 = y_coord0; valid_y1 = y_coord1; #endif // if PAD_TOP == 0, we cannot read out of bound float d00 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); float d01 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); float d02 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); float d03 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); float d04 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); float d05 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); // Row2 z_coord = (z * 4) - PAD_TOP + 2; valid_y0 = select(y_coord0, -1, (int4)z_coord < 0); valid_y1 = select(y_coord1, -1, (int2)z_coord < 0); valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2); valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); float d20 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); float d21 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); float d22 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); float d23 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); float d24 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); float d25 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); // Compute destination address __global float *dst_addr = (__global float *)(dst_ptr + dst_offset_first_element_in_bytes + x * dst_stride_x + (y + z * (int)NUM_TILES_X) * dst_stride_y); uint dst_plane_stride = dst_stride_z / sizeof(float); float out0 = k0; float out1 = k1; float out2 = k2; float out3 = k3; float out4 = k4; float out5 = k5; float out6 = k0; float out7 = k1; float out8 = k2; float out9 = k3; float out10 = k4; float out11 = k5; float out12 = k0; float out13 = k1; float out14 = k2; float out15 = k3; float out16 = k4; float out17 = k5; float out18 = k0; float out19 = k1; float out20 = k2; float out21 = k3; float out22 = k4; float out23 = k5; float out24 = k0; float out25 = k1; float out26 = k2; float out27 = k3; float out28 = k4; float out29 = k5; // Channels [0, 5]: [out00, out01, out02, out03, out04, out05] out0 += 16.0f * d00 - 20.0f * d02 - 20.0f * d20 + 25.0f * d22 + 4.0f * d04 - 5.0f * d24; out1 += -16.0f * d01 - 16.0f * d02 + 4.0f * d03 + 20.0f * d21 + 20.0f * d22 - 5.0f * d23 + 4.0f * d04 - 5.0f * d24; out2 += 16.0f * d01 - 16.0f * d02 - 4.0f * d03 - 20.0f * d21 + 20.0f * d22 + 5.0f * d23 + 4.0f * d04 - 5.0f * d24; out3 += -8.0f * d01 - 4.0f * d02 + 8.0f * d03 + 10.0f * d21 + 5.0f * d22 - 10.0f * d23 + 4.0f * d04 - 5.0f * d24; out4 += 8.0f * d01 - 4.0f * d02 - 8.0f * d03 - 10.0f * d21 + 5.0f * d22 + 10.0f * d23 + 4.0f * d04 - 5.0f * d24; out5 += 16.0f * d01 - 20.0f * d03 - 20.0f * d21 + 4.0f * d05 + 25.0f * d23 - 5.0f * d25; *((__global float *)dst_addr) = out0; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out1; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out2; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out3; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out4; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out5; dst_addr += dst_plane_stride; // Row1 z_coord = (z * 4) - PAD_TOP + 1; // Row1 can never be out of bounds valid_y0 = y_coord0; valid_y1 = y_coord1; float d10 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); float d11 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); float d12 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); float d13 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); float d14 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); float d15 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); // Row3 z_coord = (z * 4) - PAD_TOP + 3; valid_y0 = select(y_coord0, -1, (int4)z_coord < 0); valid_y1 = select(y_coord1, -1, (int2)z_coord < 0); valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2); valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); float d30 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); float d31 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); float d32 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); float d33 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); float d34 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); float d35 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); // Compute common parts for the channels between [6, 29] // Channels [6, 11]: [out10, out11, out12, out13, out14, out15] // Channels [12, 17]: [out20, out21, out22, out23, out24, out25] float part0 = -16.0f * d20 + 20.0f * d22 - 4.0f * d24; float part1 = 16.0f * d10 - 20.0f * d12 + 4.0f * d14 - 4.0f * d30 + 5.0f * d32 - d34; float part2 = 16.0f * d22 - 4.0f * d24; float part3 = 16.0f * d21 - 4.0f * d23; float part4 = 16.0f * d12 - 4.0f * d14 - 4.0f * d32 + d34; float part5 = 16.0f * d11 - 4.0f * d13 - 4.0f * d31 + d33; float part6 = 4.0f * d22 - 4.0f * d24; float part7 = 8.0f * d11 - 8.0f * d13 - 2.0f * d31 + 2.0f * d33; float part8 = 4.0f * d12 - 4.0f * d14 - d32 + d34; float part9 = 8.0f * d21 - 8.0f * d23; float part10 = -16.0f * d21 + 20.0f * d23 - 4.0f * d25; float part11 = -16.0f * d11 + 20.0f * d13 - 4.0f * d15 + 4.0f * d31 - 5.0f * d33 + d35; // Channels [18, 23]: [out30, out31, out32, out33, out34, out35] // Channels [24, 29]: [out40, out41, out42, out43, out44, out45] float part12 = 8.0f * d10 - 10.0f * d12 + 2.0f * d14 - 8.0f * d30 + 10.0f * d32 - 2.0f * d34; float part13 = part0 * 0.25f; // -4.0f * d20 + 5.0f * d22 - d24 float part14 = part2 * 0.25f; // 4.0f * d22 - d24 float part15 = 8.0f * d11 - 2.0f * d13 - 8.0f * d31 + 2.0f * d33; float part16 = 8.0f * d12 - 2.0f * d14 - 8.0f * d32 + 2.0f * d34; float part17 = part3 * 0.25f; // 4.0f * d21 - d23 float part18 = part6 * 0.25f; // d22 - d24 float part19 = 4.0f * d11 - 4.0f * d13 - 4.0f * d31 + 4.0f * d33; float part20 = 2.0f * d12 - 2.0f * d14 - 2.0f * d32 + 2.0f * d34; float part21 = part9 * 0.25f; // 2.0f * (d21 - d23) float part22 = part10 * 0.25f; // - 4.0f * d21 + 5.0f * d23 - d25 float part23 = part11 * 0.5f + 6.0f * d31 - 7.5f * d33 + 1.5f * d35; // - 8.0f * d11 + 10.0f * d13 - 2.0f * d15 + 8.0f * d31 - 10.0f * d33 + 2.0f * d35; out6 += part0 - part1; out12 += part0 + part1; out7 += part2 + part3 + part4 + part5; out8 += part2 - part3 + part4 - part5; out13 += part2 + part3 - part4 - part5; out14 += part2 - part3 - part4 + part5; out9 += part6 + part7 + part8 + part9; out10 += part6 - part7 + part8 - part9; out15 += part6 - part7 - part8 + part9; out16 += part6 + part7 - part8 - part9; out11 += part10 + part11; out17 += part10 - part11; out18 += part13 - part12; out24 += part13 + part12; out19 += part14 + part15 + part16 + part17; out20 += part14 - part15 + part16 - part17; out25 += part14 - part15 - part16 + part17; out26 += part14 + part15 - part16 - part17; out21 += part18 + part19 + part20 + part21; out22 += part18 - part19 + part20 - part21; out27 += part18 - part19 - part20 + part21; out28 += part18 + part19 - part20 - part21; out23 += part22 + part23; out29 += part22 - part23; *((__global float *)dst_addr) = out6; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out7; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out8; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out9; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out10; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out11; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out12; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out13; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out14; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out15; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out16; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out17; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out18; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out19; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out20; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out21; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out22; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out23; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out24; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out25; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out26; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out27; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out28; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out29; dst_addr += dst_plane_stride; // Row5 z_coord = (z * 4) - PAD_TOP + 5; valid_y0 = select(y_coord0, -1, (int4)z_coord < 0); valid_y1 = select(y_coord1, -1, (int2)z_coord < 0); valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2); valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); float d50 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); float d51 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); float d52 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); float d53 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); float d54 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); float d55 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); // Channels [30, 35] out0 = 16.0f * d10 - 20.0f * d12 - 20.0f * d30 + 25.0f * d32 + 4.0f * d50 - 5.0f * d52 + d54 + 4.0f * d14 - 5.0f * d34; out1 = -16.0f * d11 - 16.0f * d12 + 4.0f * d13 + 20.0f * d31 + 20.0f * d32 - 5.0f * d33 - 4.0f * d51 - 4.0f * d52 + d53 + d54 + 4.0f * d14 - 5.0f * d34; out2 = 16.0f * d11 - 16.0f * d12 - 4.0f * d13 - 20.0f * d31 + 20.0f * d32 + 5.0f * d33 + 4.0f * d51 - 4.0f * d52 - d53 + d54 + 4.0f * d14 - 5.0f * d34; out3 = -8.0f * d11 - 4.0f * d12 + 8.0f * d13 + 10.0f * d31 - 10.0f * d33 + 5.0f * d32 - 2.0f * d51 + 2.0f * d53 - d52 + d54 + 4.0f * d14 - 5.0f * d34; out4 = 8.0f * d11 - 4.0f * d12 - 8.0f * d13 - 10.0f * d31 + 5.0f * d32 + 10.0f * d33 + 2.0f * d51 - 2.0f * d53 - d52 + d54 + 4.0f * d14 - 5.0f * d34; out5 = 16.0f * d11 - 20.0f * d13 + 4.0f * d15 - 20.0f * d31 + 25.0f * d33 - 5.0f * d35 + 4.0f * d51 - 5.0f * d53 + d55; *((__global float *)dst_addr) = out0; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out1; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out2; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out3; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out4; dst_addr += dst_plane_stride; *((__global float *)dst_addr) = out5; dst_addr += dst_plane_stride; } #endif // defined(SRC_DIM_1) && defined(SRC_DIM_2) #define OUTPUT_ROW_4x4_5x5(out, tmp, comm_fact) \ ({ \ comm_fact.s0 = tmp.s2 - 4.25f * tmp.s4 + tmp.s6; \ comm_fact.s1 = tmp.s1 - 4.25f * tmp.s3 + tmp.s5; \ comm_fact.s2 = 2.5f * tmp.s3; \ comm_fact.s3 = 0.5f * tmp.s1 + 2.f * tmp.s5 - comm_fact.s2; \ comm_fact.s4 = 0.25f * tmp.s2 - 1.25f * tmp.s4 + tmp.s6; \ comm_fact.s5 = 4.f * tmp.s2 + tmp.s6 - 5.f * tmp.s4; \ comm_fact.s6 = 2.f * tmp.s1 + 0.5f * tmp.s5 - comm_fact.s2; \ \ out.s0 = tmp.s0 - tmp.s6 + 5.25f * tmp.s4 - 5.25f * tmp.s2; \ out.s1 = comm_fact.s0 + comm_fact.s1; \ out.s2 = comm_fact.s0 - comm_fact.s1; \ out.s3 = comm_fact.s3 + comm_fact.s4; \ out.s4 = comm_fact.s4 - comm_fact.s3; \ out.s5 = comm_fact.s5 + comm_fact.s6; \ out.s6 = comm_fact.s5 - comm_fact.s6; \ out.s7 = tmp.s7 - tmp.s1 + 5.25f * tmp.s3 - 5.25f * tmp.s5; \ }) /** This OpenCL kernel computes the input transform when the kernel size is 5x5 and the output tile is 4x4 when the data layout is NCHW * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_4x4_5x5_stepz1_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { int x = get_global_id(0); int y = get_global_id(1); int z = get_global_id(2); // Compute input address __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * 4 * src_stride_x + y * 4 * src_stride_y + z * src_stride_z; src_addr = src_addr - ((int)PAD_LEFT * src_stride_x) - ((int)PAD_TOP * src_stride_y); // Load 8x8 input tile const float8 in_row0 = vload8(0, (__global float *)(src_addr + 0 * src_stride_y)); const float8 in_row1 = vload8(0, (__global float *)(src_addr + 1 * src_stride_y)); const float8 in_row2 = vload8(0, (__global float *)(src_addr + 2 * src_stride_y)); const float8 in_row3 = vload8(0, (__global float *)(src_addr + 3 * src_stride_y)); const float8 in_row4 = vload8(0, (__global float *)(src_addr + 4 * src_stride_y)); const float8 in_row5 = vload8(0, (__global float *)(src_addr + 5 * src_stride_y)); const float8 in_row6 = vload8(0, (__global float *)(src_addr + 6 * src_stride_y)); const float8 in_row7 = vload8(0, (__global float *)(src_addr + 7 * src_stride_y)); // Calculate common factors for intermediate tensor float8 comm_fact0 = in_row2 + in_row6 - 4.25f * in_row4; float8 comm_fact1 = in_row1 + in_row5 - 4.25f * in_row3; float8 comm_fact2 = 0.25f * in_row2 - 1.25f * in_row4 + in_row6; // Calculate intermediate tensor and reuse common factor vectors const float8 tmp0 = in_row0 - in_row6 + 5.25f * in_row4 - 5.25f * in_row2; const float8 tmp1 = comm_fact0 + comm_fact1; const float8 tmp2 = comm_fact0 - comm_fact1; comm_fact0 = 2.5f * in_row3; comm_fact1 = 0.5f * in_row1 - comm_fact0 + 2.f * in_row5; const float8 tmp3 = comm_fact1 + comm_fact2; const float8 tmp4 = comm_fact2 - comm_fact1; comm_fact1 = 2.f * in_row1 - comm_fact0 + 0.5f * in_row5; comm_fact2 = 4.f * in_row2 - 5.f * in_row4 + in_row6; const float8 tmp5 = comm_fact1 + comm_fact2; const float8 tmp6 = comm_fact2 - comm_fact1; const float8 tmp7 = in_row7 - in_row1 + 5.25f * in_row3 - 5.25f * in_row5; // Calculate output rows (reuse comm_fact0 vector) float8 out0, out1, out2, out3, out4, out5, out6, out7; OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0); OUTPUT_ROW_4x4_5x5(out1, tmp1, comm_fact0); OUTPUT_ROW_4x4_5x5(out2, tmp2, comm_fact0); OUTPUT_ROW_4x4_5x5(out3, tmp3, comm_fact0); OUTPUT_ROW_4x4_5x5(out4, tmp4, comm_fact0); OUTPUT_ROW_4x4_5x5(out5, tmp5, comm_fact0); OUTPUT_ROW_4x4_5x5(out6, tmp6, comm_fact0); OUTPUT_ROW_4x4_5x5(out7, tmp7, comm_fact0); // Store values across the 64 channels __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * dst_stride_x + (x + y * (int)NUM_TILES_X) * dst_stride_y; *((__global float *)(dst_addr + 0 * dst_stride_z)) = out0.s0; *((__global float *)(dst_addr + 1 * dst_stride_z)) = out0.s1; *((__global float *)(dst_addr + 2 * dst_stride_z)) = out0.s2; *((__global float *)(dst_addr + 3 * dst_stride_z)) = out0.s3; *((__global float *)(dst_addr + 4 * dst_stride_z)) = out0.s4; *((__global float *)(dst_addr + 5 * dst_stride_z)) = out0.s5; *((__global float *)(dst_addr + 6 * dst_stride_z)) = out0.s6; *((__global float *)(dst_addr + 7 * dst_stride_z)) = out0.s7; *((__global float *)(dst_addr + 8 * dst_stride_z)) = out1.s0; *((__global float *)(dst_addr + 9 * dst_stride_z)) = out1.s1; *((__global float *)(dst_addr + 10 * dst_stride_z)) = out1.s2; *((__global float *)(dst_addr + 11 * dst_stride_z)) = out1.s3; *((__global float *)(dst_addr + 12 * dst_stride_z)) = out1.s4; *((__global float *)(dst_addr + 13 * dst_stride_z)) = out1.s5; *((__global float *)(dst_addr + 14 * dst_stride_z)) = out1.s6; *((__global float *)(dst_addr + 15 * dst_stride_z)) = out1.s7; *((__global float *)(dst_addr + 16 * dst_stride_z)) = out2.s0; *((__global float *)(dst_addr + 17 * dst_stride_z)) = out2.s1; *((__global float *)(dst_addr + 18 * dst_stride_z)) = out2.s2; *((__global float *)(dst_addr + 19 * dst_stride_z)) = out2.s3; *((__global float *)(dst_addr + 20 * dst_stride_z)) = out2.s4; *((__global float *)(dst_addr + 21 * dst_stride_z)) = out2.s5; *((__global float *)(dst_addr + 22 * dst_stride_z)) = out2.s6; *((__global float *)(dst_addr + 23 * dst_stride_z)) = out2.s7; *((__global float *)(dst_addr + 24 * dst_stride_z)) = out3.s0; *((__global float *)(dst_addr + 25 * dst_stride_z)) = out3.s1; *((__global float *)(dst_addr + 26 * dst_stride_z)) = out3.s2; *((__global float *)(dst_addr + 27 * dst_stride_z)) = out3.s3; *((__global float *)(dst_addr + 28 * dst_stride_z)) = out3.s4; *((__global float *)(dst_addr + 29 * dst_stride_z)) = out3.s5; *((__global float *)(dst_addr + 30 * dst_stride_z)) = out3.s6; *((__global float *)(dst_addr + 31 * dst_stride_z)) = out3.s7; *((__global float *)(dst_addr + 32 * dst_stride_z)) = out4.s0; *((__global float *)(dst_addr + 33 * dst_stride_z)) = out4.s1; *((__global float *)(dst_addr + 34 * dst_stride_z)) = out4.s2; *((__global float *)(dst_addr + 35 * dst_stride_z)) = out4.s3; *((__global float *)(dst_addr + 36 * dst_stride_z)) = out4.s4; *((__global float *)(dst_addr + 37 * dst_stride_z)) = out4.s5; *((__global float *)(dst_addr + 38 * dst_stride_z)) = out4.s6; *((__global float *)(dst_addr + 39 * dst_stride_z)) = out4.s7; *((__global float *)(dst_addr + 40 * dst_stride_z)) = out5.s0; *((__global float *)(dst_addr + 41 * dst_stride_z)) = out5.s1; *((__global float *)(dst_addr + 42 * dst_stride_z)) = out5.s2; *((__global float *)(dst_addr + 43 * dst_stride_z)) = out5.s3; *((__global float *)(dst_addr + 44 * dst_stride_z)) = out5.s4; *((__global float *)(dst_addr + 45 * dst_stride_z)) = out5.s5; *((__global float *)(dst_addr + 46 * dst_stride_z)) = out5.s6; *((__global float *)(dst_addr + 47 * dst_stride_z)) = out5.s7; *((__global float *)(dst_addr + 48 * dst_stride_z)) = out6.s0; *((__global float *)(dst_addr + 49 * dst_stride_z)) = out6.s1; *((__global float *)(dst_addr + 50 * dst_stride_z)) = out6.s2; *((__global float *)(dst_addr + 51 * dst_stride_z)) = out6.s3; *((__global float *)(dst_addr + 52 * dst_stride_z)) = out6.s4; *((__global float *)(dst_addr + 53 * dst_stride_z)) = out6.s5; *((__global float *)(dst_addr + 54 * dst_stride_z)) = out6.s6; *((__global float *)(dst_addr + 55 * dst_stride_z)) = out6.s7; *((__global float *)(dst_addr + 56 * dst_stride_z)) = out7.s0; *((__global float *)(dst_addr + 57 * dst_stride_z)) = out7.s1; *((__global float *)(dst_addr + 58 * dst_stride_z)) = out7.s2; *((__global float *)(dst_addr + 59 * dst_stride_z)) = out7.s3; *((__global float *)(dst_addr + 60 * dst_stride_z)) = out7.s4; *((__global float *)(dst_addr + 61 * dst_stride_z)) = out7.s5; *((__global float *)(dst_addr + 62 * dst_stride_z)) = out7.s6; *((__global float *)(dst_addr + 63 * dst_stride_z)) = out7.s7; } #if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) /** This OpenCL kernel computes the input transform when the kernel size is 3x1 and the output tile is 2x1 * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2 * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1 * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_2x1_3x1_stepz1_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { winograd_input_transform_2x2_3x3_stepz1_nchw(src_ptr, src_stride_x, src_step_x, src_stride_y, src_step_y, src_stride_z, src_step_z, src_offset_first_element_in_bytes, dst_ptr, dst_stride_x, dst_step_x, dst_stride_y, dst_step_y, dst_stride_z, dst_step_z, dst_offset_first_element_in_bytes); } /** This OpenCL kernel computes the input transform when the kernel size is 3x1, the output tile is 2x1 and the number of channels is multiple of 2 * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2 * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1 * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_2x1_3x1_stepz2_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { winograd_input_transform_2x2_3x3_stepz2_nchw(src_ptr, src_stride_x, src_step_x, src_stride_y, src_step_y, src_stride_z, src_step_z, src_offset_first_element_in_bytes, dst_ptr, dst_stride_x, dst_step_x, dst_stride_y, dst_step_y, dst_stride_z, dst_step_z, dst_offset_first_element_in_bytes); } /** This OpenCL kernel computes the input transform when the kernel size is 3x1 and the output tile is 4x1 * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4 * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1 * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_4x1_3x1_stepz1_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { winograd_input_transform_4x4_3x3_stepz1_nchw(src_ptr, src_stride_x, src_step_x, src_stride_y, src_step_y, src_stride_z, src_step_z, src_offset_first_element_in_bytes, dst_ptr, dst_stride_x, dst_step_x, dst_stride_y, dst_step_y, dst_stride_z, dst_step_z, dst_offset_first_element_in_bytes); } #endif // defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) #if defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) /** This OpenCL kernel computes the input transform when the kernel size is 1x3 and the output tile is 1x2 * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1 * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2 * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_1x2_1x3_stepz1_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { winograd_input_transform_2x2_3x3_stepz1_nchw(src_ptr, src_stride_x, src_step_x, src_stride_y, src_step_y, src_stride_z, src_step_z, src_offset_first_element_in_bytes, dst_ptr, dst_stride_x, dst_step_x, dst_stride_y, dst_step_y, dst_stride_z, dst_step_z, dst_offset_first_element_in_bytes); } /** This OpenCL kernel computes the input transform when the kernel size is 1x3, the output tile is 1x2 and the number of channels is multiple of 2 * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1 * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2 * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_1x2_1x3_stepz2_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { winograd_input_transform_2x2_3x3_stepz2_nchw(src_ptr, src_stride_x, src_step_x, src_stride_y, src_step_y, src_stride_z, src_step_z, src_offset_first_element_in_bytes, dst_ptr, dst_stride_x, dst_step_x, dst_stride_y, dst_step_y, dst_stride_z, dst_step_z, dst_offset_first_element_in_bytes); } /** This OpenCL kernel computes the input transform when the kernel size is 1x3 and the output tile is 1x4 * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1 * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4 * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_1x4_1x3_stepz1_nchw( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { winograd_input_transform_4x4_3x3_stepz1_nchw(src_ptr, src_stride_x, src_step_x, src_stride_y, src_step_y, src_stride_z, src_step_z, src_offset_first_element_in_bytes, dst_ptr, dst_stride_x, dst_step_x, dst_stride_y, dst_step_y, dst_stride_z, dst_step_z, dst_offset_first_element_in_bytes); } #endif // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) #if defined(SRC_DIM_1) && defined(SRC_DIM_2) /** This OpenCL kernel computes the input transform when the kernel size is 5x5 and the output tile is 4x4 when the data layout is NHWC * * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4 * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4 * * @param[in] src_ptr Pointer to the source image. Supported data types: F32 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void winograd_input_transform_4x4_5x5_stepz1_nhwc( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst)) { int x = get_global_id(0); int y = get_global_id(1); int z = get_global_id(2); // Compute input address __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(float); // Clamp coordinates. This clamp is valid for all rows int8 y_coord = (int8)(y * 4) + (int8)(0, 1, 2, 3, 4, 5, 6, 7) - (int8)PAD_LEFT; y_coord = clamp(y_coord, -1, SRC_DIM_1); // Load 8x8 input tile float8 in_row0, in_row1, in_row2, in_row3, in_row4, in_row5, in_row6, in_row7; // Row0 int z_coord = (z * 4) - PAD_TOP + 0; int8 valid_y = select(y_coord, -1, (int8)z_coord < 0); // If z < 0, set y to -1 valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); // If z >= SRC_DIM_2, set y to SRC_DIM_2 z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); // Clamp z coordinate in_row0.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); in_row0.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); in_row0.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); in_row0.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); in_row0.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); in_row0.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); in_row0.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); in_row0.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); // Row1 z_coord = (z * 4) - PAD_TOP + 1; valid_y = select(y_coord, -1, (int8)z_coord < 0); valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); in_row1.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); in_row1.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); in_row1.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); in_row1.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); in_row1.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); in_row1.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); in_row1.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); in_row1.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); // Row2 z_coord = (z * 4) - PAD_TOP + 2; valid_y = select(y_coord, -1, (int8)z_coord < 0); valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); in_row2.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); in_row2.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); in_row2.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); in_row2.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); in_row2.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); in_row2.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); in_row2.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); in_row2.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); // Row3 z_coord = (z * 4) - PAD_TOP + 3; valid_y = select(y_coord, -1, (int8)z_coord < 0); valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); in_row3.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); in_row3.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); in_row3.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); in_row3.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); in_row3.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); in_row3.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); in_row3.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); in_row3.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); // Row4 z_coord = (z * 4) - PAD_TOP + 4; valid_y = select(y_coord, -1, (int8)z_coord < 0); valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); in_row4.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); in_row4.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); in_row4.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); in_row4.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); in_row4.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); in_row4.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); in_row4.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); in_row4.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); // Row5 z_coord = (z * 4) - PAD_TOP + 5; valid_y = select(y_coord, -1, (int8)z_coord < 0); valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); in_row5.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); in_row5.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); in_row5.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); in_row5.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); in_row5.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); in_row5.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); in_row5.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); in_row5.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); // Row6 z_coord = (z * 4) - PAD_TOP + 6; valid_y = select(y_coord, -1, (int8)z_coord < 0); valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); in_row6.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); in_row6.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); in_row6.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); in_row6.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); in_row6.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); in_row6.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); in_row6.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); in_row6.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); // Row7 z_coord = (z * 4) - PAD_TOP + 7; valid_y = select(y_coord, -1, (int8)z_coord < 0); valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); in_row7.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); in_row7.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); in_row7.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); in_row7.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); in_row7.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); in_row7.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); in_row7.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); in_row7.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); // Calculate common factors for intermediate tensor float8 comm_fact0 = in_row2 + in_row6 - 4.25f * in_row4; float8 comm_fact1 = in_row1 + in_row5 - 4.25f * in_row3; float8 comm_fact2 = 0.25f * in_row2 - 1.25f * in_row4 + in_row6; // Calculate intermediate tensor and reuse common factor vectors const float8 tmp0 = in_row0 - in_row6 + 5.25f * in_row4 - 5.25f * in_row2; const float8 tmp1 = comm_fact0 + comm_fact1; const float8 tmp2 = comm_fact0 - comm_fact1; comm_fact0 = 2.5f * in_row3; comm_fact1 = 0.5f * in_row1 - comm_fact0 + 2.f * in_row5; const float8 tmp3 = comm_fact1 + comm_fact2; const float8 tmp4 = comm_fact2 - comm_fact1; comm_fact1 = 2.f * in_row1 - comm_fact0 + 0.5f * in_row5; comm_fact2 = 4.f * in_row2 - 5.f * in_row4 + in_row6; const float8 tmp5 = comm_fact1 + comm_fact2; const float8 tmp6 = comm_fact2 - comm_fact1; const float8 tmp7 = in_row7 - in_row1 + 5.25f * in_row3 - 5.25f * in_row5; // Calculate output rows (reuse comm_fact0 vector) float8 out0, out1, out2, out3, out4, out5, out6, out7; OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0); OUTPUT_ROW_4x4_5x5(out1, tmp1, comm_fact0); OUTPUT_ROW_4x4_5x5(out2, tmp2, comm_fact0); OUTPUT_ROW_4x4_5x5(out3, tmp3, comm_fact0); OUTPUT_ROW_4x4_5x5(out4, tmp4, comm_fact0); OUTPUT_ROW_4x4_5x5(out5, tmp5, comm_fact0); OUTPUT_ROW_4x4_5x5(out6, tmp6, comm_fact0); OUTPUT_ROW_4x4_5x5(out7, tmp7, comm_fact0); // Store values across the 64 channels __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(float) + (y + z * (int)NUM_TILES_X) * dst_stride_y; *((__global float *)(dst_addr + 0 * dst_stride_z)) = out0.s0; *((__global float *)(dst_addr + 1 * dst_stride_z)) = out0.s1; *((__global float *)(dst_addr + 2 * dst_stride_z)) = out0.s2; *((__global float *)(dst_addr + 3 * dst_stride_z)) = out0.s3; *((__global float *)(dst_addr + 4 * dst_stride_z)) = out0.s4; *((__global float *)(dst_addr + 5 * dst_stride_z)) = out0.s5; *((__global float *)(dst_addr + 6 * dst_stride_z)) = out0.s6; *((__global float *)(dst_addr + 7 * dst_stride_z)) = out0.s7; *((__global float *)(dst_addr + 8 * dst_stride_z)) = out1.s0; *((__global float *)(dst_addr + 9 * dst_stride_z)) = out1.s1; *((__global float *)(dst_addr + 10 * dst_stride_z)) = out1.s2; *((__global float *)(dst_addr + 11 * dst_stride_z)) = out1.s3; *((__global float *)(dst_addr + 12 * dst_stride_z)) = out1.s4; *((__global float *)(dst_addr + 13 * dst_stride_z)) = out1.s5; *((__global float *)(dst_addr + 14 * dst_stride_z)) = out1.s6; *((__global float *)(dst_addr + 15 * dst_stride_z)) = out1.s7; *((__global float *)(dst_addr + 16 * dst_stride_z)) = out2.s0; *((__global float *)(dst_addr + 17 * dst_stride_z)) = out2.s1; *((__global float *)(dst_addr + 18 * dst_stride_z)) = out2.s2; *((__global float *)(dst_addr + 19 * dst_stride_z)) = out2.s3; *((__global float *)(dst_addr + 20 * dst_stride_z)) = out2.s4; *((__global float *)(dst_addr + 21 * dst_stride_z)) = out2.s5; *((__global float *)(dst_addr + 22 * dst_stride_z)) = out2.s6; *((__global float *)(dst_addr + 23 * dst_stride_z)) = out2.s7; *((__global float *)(dst_addr + 24 * dst_stride_z)) = out3.s0; *((__global float *)(dst_addr + 25 * dst_stride_z)) = out3.s1; *((__global float *)(dst_addr + 26 * dst_stride_z)) = out3.s2; *((__global float *)(dst_addr + 27 * dst_stride_z)) = out3.s3; *((__global float *)(dst_addr + 28 * dst_stride_z)) = out3.s4; *((__global float *)(dst_addr + 29 * dst_stride_z)) = out3.s5; *((__global float *)(dst_addr + 30 * dst_stride_z)) = out3.s6; *((__global float *)(dst_addr + 31 * dst_stride_z)) = out3.s7; *((__global float *)(dst_addr + 32 * dst_stride_z)) = out4.s0; *((__global float *)(dst_addr + 33 * dst_stride_z)) = out4.s1; *((__global float *)(dst_addr + 34 * dst_stride_z)) = out4.s2; *((__global float *)(dst_addr + 35 * dst_stride_z)) = out4.s3; *((__global float *)(dst_addr + 36 * dst_stride_z)) = out4.s4; *((__global float *)(dst_addr + 37 * dst_stride_z)) = out4.s5; *((__global float *)(dst_addr + 38 * dst_stride_z)) = out4.s6; *((__global float *)(dst_addr + 39 * dst_stride_z)) = out4.s7; *((__global float *)(dst_addr + 40 * dst_stride_z)) = out5.s0; *((__global float *)(dst_addr + 41 * dst_stride_z)) = out5.s1; *((__global float *)(dst_addr + 42 * dst_stride_z)) = out5.s2; *((__global float *)(dst_addr + 43 * dst_stride_z)) = out5.s3; *((__global float *)(dst_addr + 44 * dst_stride_z)) = out5.s4; *((__global float *)(dst_addr + 45 * dst_stride_z)) = out5.s5; *((__global float *)(dst_addr + 46 * dst_stride_z)) = out5.s6; *((__global float *)(dst_addr + 47 * dst_stride_z)) = out5.s7; *((__global float *)(dst_addr + 48 * dst_stride_z)) = out6.s0; *((__global float *)(dst_addr + 49 * dst_stride_z)) = out6.s1; *((__global float *)(dst_addr + 50 * dst_stride_z)) = out6.s2; *((__global float *)(dst_addr + 51 * dst_stride_z)) = out6.s3; *((__global float *)(dst_addr + 52 * dst_stride_z)) = out6.s4; *((__global float *)(dst_addr + 53 * dst_stride_z)) = out6.s5; *((__global float *)(dst_addr + 54 * dst_stride_z)) = out6.s6; *((__global float *)(dst_addr + 55 * dst_stride_z)) = out6.s7; *((__global float *)(dst_addr + 56 * dst_stride_z)) = out7.s0; *((__global float *)(dst_addr + 57 * dst_stride_z)) = out7.s1; *((__global float *)(dst_addr + 58 * dst_stride_z)) = out7.s2; *((__global float *)(dst_addr + 59 * dst_stride_z)) = out7.s3; *((__global float *)(dst_addr + 60 * dst_stride_z)) = out7.s4; *((__global float *)(dst_addr + 61 * dst_stride_z)) = out7.s5; *((__global float *)(dst_addr + 62 * dst_stride_z)) = out7.s6; *((__global float *)(dst_addr + 63 * dst_stride_z)) = out7.s7; } #endif // defined(SRC_DIM_1) && defined(SRC_DIM_2) #endif // defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(OUTPUT_TILE_W) && defined(OUTPUT_TILE_H)