/* * Copyright (c) 2016, 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #include "warp_helpers.h" /** Returns the perspective matrix */ inline const float16 build_perspective_mtx() { return (float16)(MAT0, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6, MAT7, MAT8, 0, 0, 0, (float4)0); } /** Transforms four 2D coordinates using the formula: * * x0 = M[1][1] * x + M[1][2] * y + M[1][3] * y0 = M[2][1] * x + M[2][2] * y + M[2][3] * z0 = M[3][1] * x + M[3][2] * y + M[3][3] * * (x0/z0,y0/z0) * * @param[in] coord 2D coordinate to transform. * @param[in] mtx perspective matrix * * @return a vector float8 containing four 2D transformed values. */ inline const float8 apply_perspective_transform(const float2 coord, const float16 mtx) { const float4 in_x_coords = (float4)(coord.s0, 1 + coord.s0, 2 + coord.s0, 3 + coord.s0); // transform [z,z+1,z+2,z+3] const float4 z = (float4)mad(in_x_coords, (float4)(mtx.s2), mad((float4)(coord.s1), (float4)(mtx.s5), (float4)(mtx.s8))); // NOTE: Do not multiply x&y by 1.f/Z as this will result in loss of accuracy and mismatches with VX reference implementation // transform [x,x+1,x+2,x+3] const float4 new_x = (float4)mad(in_x_coords, (float4)(mtx.s0), mad((float4)(coord.s1), (float4)(mtx.s3), (float4)(mtx.s6))) / z; // transform [y,y+1,y+2,y+3] const float4 new_y = (float4)mad(in_x_coords, (float4)(mtx.s1), mad((float4)(coord.s1), (float4)(mtx.s4), (float4)(mtx.s7))) / z; return (float8)(new_x.s0, new_y.s0, new_x.s1, new_y.s1, new_x.s2, new_y.s2, new_x.s3, new_y.s3); } /** Performs perspective transformation on an image interpolating with the NEAREAST NEIGHBOUR method. Input and output are single channel U8. * * This kernel performs perspective transform with a 3x3 Matrix M with this method of pixel coordinate translation: * x0 = M[1][1] * x + M[1][2] * y + M[1][3] * y0 = M[2][1] * x + M[2][2] * y + M[2][3] * z0 = M[3][1] * x + M[3][2] * y + M[3][3] * * output(x,y) = input(x0/z0,y0/z0) * * @attention The matrix coefficients need to be passed at compile time:\n * const char build_options [] = "-DMAT0=1 -DMAT1=2 -DMAT2=3 -DMAT3=4 -DMAT4=5 -DMAT5=6 -DMAT6=7 -DMAT7=8 -DMAT8=9"\n * clBuildProgram( program, 0, NULL, build_options, NULL, NULL); * * @param[in] in_ptr Pointer to the source image. Supported data types: U8. * @param[in] in_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in_step_x in_stride_x * number of elements along X processed per work item (in bytes) * @param[in] in_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in_step_y in_stride_y * number of elements along Y processed per work item (in bytes) * @param[in] in_offset_first_element_in_bytes Offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: U8. * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per work item (in bytes) * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per work item (in bytes) * @param[in] out_offset_first_element_in_bytes Offset of the first element in the destination image * @param[in] width Width of the destination image * @param[in] height Height of the destination image */ __kernel void warp_perspective_nearest_neighbour( IMAGE_DECLARATION(in), IMAGE_DECLARATION(out), const int width, const int height) { Image in = CONVERT_TO_IMAGE_STRUCT_NO_STEP(in); Image out = CONVERT_TO_IMAGE_STRUCT(out); vstore4(read_texels4(&in, convert_int8_rtn(clamp_to_border(apply_perspective_transform(get_current_coords(), build_perspective_mtx()), width, height))), 0, out.ptr); } /** Performs a perspective transform on an image interpolating with the BILINEAR method. Input and output are single channel U8. * * @attention The matrix coefficients need to be passed at compile time:\n * const char build_options [] = "-DMAT0=1 -DMAT1=2 -DMAT2=3 -DMAT3=4 -DMAT4=5 -DMAT5=6 -DMAT6=7 -DMAT7=8 -DMAT8=9"\n * clBuildProgram( program, 0, NULL, build_options, NULL, NULL); * * @param[in] in_ptr Pointer to the source image. Supported data types: U8. * @param[in] in_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in_step_x in_stride_x * number of elements along X processed per work item (in bytes) * @param[in] in_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in_step_y in_stride_y * number of elements along Y processed per work item (in bytes) * @param[in] in_offset_first_element_in_bytes Offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: U8. * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per work item (in bytes) * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per work item (in bytes) * @param[in] out_offset_first_element_in_bytes Offset of the first element in the destination image * @param[in] width Width of the destination image * @param[in] height Height of the destination image */ __kernel void warp_perspective_bilinear( IMAGE_DECLARATION(in), IMAGE_DECLARATION(out), const int width, const int height) { Image in = CONVERT_TO_IMAGE_STRUCT_NO_STEP(in); Image out = CONVERT_TO_IMAGE_STRUCT(out); vstore4(bilinear_interpolate(&in, apply_perspective_transform(get_current_coords(), build_perspective_mtx()), width, height), 0, out.ptr); }