/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software withoutput restriction, including withoutput limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KOUTD, EXPRESS OR * IMPLIED, OUTCLUDOUTG BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONOUTFROUTGEMENT. OUT NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER OUT AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISOUTG FROM, * OUT OF OR OUT CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALOUTGS OUT THE * SOFTWARE. */ #include "helpers.h" #if defined(BATCH_SIZE) && defined(DATA_TYPE) && defined(WIDTH_IN) && defined(HEIGHT_IN) /** Calculate the space to batch conversion. * * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float * @note The block shape tensor rank must be passed at compile time using -DBLOCK_SHAPE_DIM. e.g. -DBLOCK_SHAPE_DIM=2 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image * @param[in] paddings_ptr Pointer to the second source image. Supported data types: S32 * @param[in] paddings_stride_x Stride of the paddinds tensor in X dimension (in bytes) * @param[in] paddings_step_x paddings_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] paddings_stride_y Stride of the paddinds tensor in Y dimension (in bytes) * @param[in] paddings_step_y paddings_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] paddingse_offset_first_element_in_bytes The offset of the first element in the second source image * @param[in] block_shape_ptr Pointer to the block shape tensor. Supported data types: S32 * @param[in] block_shape_stride_x Stride of the block shape tensor in X dimension (in bytes) * @param[in] block_shape_step_x block_shape_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] block_shape_stride_y Stride of the block shape tensor in Y dimension (in bytes) * @param[in] block_shape_step_y block_shape_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] block_shape_offset_first_element_in_bytes The offset of the first element in the block shapetensor * @param[in] batch_id The output tensor batch id * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image */ __kernel void space_to_batch_nchw( TENSOR4D_DECLARATION(input), IMAGE_DECLARATION(paddings), VECTOR_DECLARATION(block_shape), const int batch_id, TENSOR3D_DECLARATION(output)) { Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(input, 0); Image pad = CONVERT_TO_IMAGE_STRUCT_NO_STEP(paddings); Vector block = CONVERT_TO_VECTOR_STRUCT_NO_STEP(block_shape); Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output); const int pad_left_x = *((__global int *)offset(&pad, 0, 0)); const int pad_right_x = *((__global int *)offset(&pad, 1, 0)); const int pad_left_y = *((__global int *)offset(&pad, 0, 1)); const int pad_right_y = *((__global int *)offset(&pad, 1, 1)); int block_x = *((__global int *)vector_offset(&block, 0)); int block_y = *((__global int *)vector_offset(&block, 1)); const int out_x = get_global_id(0); const int out_y = get_global_id(1); const int z = get_global_id(2); const int pos_x = out_x * block_x + ((batch_id / BATCH_IN) % block_x); const int pos_y = out_y * block_y + ((batch_id / BATCH_IN) / block_x); if(((pos_y >= pad_left_y) && (pos_y < pad_left_y + HEIGHT_IN) && (pos_x >= pad_left_x) && (pos_x < pad_left_x + WIDTH_IN))) { const int w = batch_id % BATCH_IN; const int in_x = pos_x - pad_left_x; const int in_y = pos_y - pad_left_y; *((__global DATA_TYPE *)out.ptr) = *((__global DATA_TYPE *)tensor4D_offset(&in, in_x, in_y, z, w)); } } /** Calculate the space to batch conversion. (NHWC) * * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float * @note The block shape tensor rank must be passed at compile time using -DBLOCK_SHAPE_DIM. e.g. -DBLOCK_SHAPE_DIM=2 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image * @param[in] paddings_ptr Pointer to the second source image. Supported data types: S32 * @param[in] paddings_stride_x Stride of the paddinds tensor in X dimension (in bytes) * @param[in] paddings_step_x paddings_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] paddings_stride_y Stride of the paddinds tensor in Y dimension (in bytes) * @param[in] paddings_step_y paddings_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] paddingse_offset_first_element_in_bytes The offset of the first element in the second source image * @param[in] block_shape_ptr Pointer to the block shape tensor. Supported data types: S32 * @param[in] block_shape_stride_x Stride of the block shape tensor in X dimension (in bytes) * @param[in] block_shape_step_x block_shape_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] block_shape_stride_y Stride of the block shape tensor in Y dimension (in bytes) * @param[in] block_shape_step_y block_shape_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] block_shape_offset_first_element_in_bytes The offset of the first element in the block shapetensor * @param[in] batch_id The output tensor batch id * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image */ __kernel void space_to_batch_nhwc( TENSOR4D_DECLARATION(input), IMAGE_DECLARATION(paddings), VECTOR_DECLARATION(block_shape), const int batch_id, TENSOR3D_DECLARATION(output)) { Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(input, 0); Image pad = CONVERT_TO_IMAGE_STRUCT_NO_STEP(paddings); Vector block = CONVERT_TO_VECTOR_STRUCT_NO_STEP(block_shape); Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output); const int pad_left_x = *((__global int *)offset(&pad, 0, 0)); const int pad_right_x = *((__global int *)offset(&pad, 1, 0)); const int pad_left_y = *((__global int *)offset(&pad, 0, 1)); const int pad_right_y = *((__global int *)offset(&pad, 1, 1)); int block_x = *((__global int *)vector_offset(&block, 0)); int block_y = *((__global int *)vector_offset(&block, 1)); const int out_x = get_global_id(1); const int out_y = get_global_id(2); const int z = get_global_id(0); const int pos_x = out_x * block_x + ((batch_id / BATCH_IN) % block_x); const int pos_y = out_y * block_y + ((batch_id / BATCH_IN) / block_x); if(((pos_y >= pad_left_y) && (pos_y < pad_left_y + HEIGHT_IN) && (pos_x >= pad_left_x) && (pos_x < pad_left_x + WIDTH_IN))) { const int w = batch_id % BATCH_IN; const int in_x = pos_x - pad_left_x; const int in_y = pos_y - pad_left_y; *((__global DATA_TYPE *)out.ptr) = *((__global DATA_TYPE *)tensor4D_offset(&in, z, in_x, in_y, w)); } } #endif // defined(BATCH_SIZE) && defined(DATA_TYPE) && defined(WIDTH_IN) && defined(HEIGHT_IN) #if defined(BATCH_SIZE) && defined(DATA_TYPE) && defined(BLOCK_SHAPE_X) && defined(BLOCK_SHAPE_Y) && defined(PAD_LEFT_X) && defined(PAD_RIGHT_X) && defined(PAD_LEFT_Y) && defined(PAD_RIGHT_Y) && defined(WIDTH_IN) && defined(HEIGHT_IN) /** Calculate the space to batch conversion. * * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float * @note The input tensor batch size must be passed at compile time using -DBATCH_SIZE. e.g. -DBATCH_SIZE=2 * @note The block shape x must be passed at compile time using -DBLOCK_SHAPE_X. e.g. -DBLOCK_SHAPE_X=2 * @note The block shape y must be passed at compile time using -DBLOCK_SHAPE_Y. e.g. -DBLOCK_SHAPE_Y=2 * @note The starting pad value of x must be passed at compile time using -DPAD_LEFT_X. e.g. -DPAD_LEFT_X=2 * @note The ending pad value of x must be passed at compile time using -DPAD_RIGHT_X. e.g. -DPAD_RIGHT_X=2 * @note The starting pad value of y must be passed at compile time using -DPAD_LEFT_Y. e.g. -DPAD_LEFT_Y=2 * @note The ending pad value of y must be passed at compile time using -DPAD_RIGHT_Y. e.g. -DPAD_RIGHT_X=2 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image * @param[in] batch_id The output tensor batch id * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image */ __kernel void space_to_batch_static_nchw( TENSOR4D_DECLARATION(input), const int batch_id, TENSOR3D_DECLARATION(output)) { Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(input, 0); Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output); int block_x = BLOCK_SHAPE_X; int block_y = BLOCK_SHAPE_Y; const int out_x = get_global_id(0); const int out_y = get_global_id(1); const int z = get_global_id(2); const int pos_x = out_x * block_x + ((batch_id / BATCH_IN) % block_x); const int pos_y = out_y * block_y + ((batch_id / BATCH_IN) / block_x); if(pos_y >= PAD_LEFT_Y && pos_y < PAD_LEFT_Y + HEIGHT_IN && pos_x >= PAD_LEFT_X && pos_x < PAD_LEFT_X + WIDTH_IN) { const int w = batch_id % BATCH_IN; const int in_x = pos_x - PAD_LEFT_X; const int in_y = pos_y - PAD_LEFT_Y; *((__global DATA_TYPE *)out.ptr) = *((__global DATA_TYPE *)tensor4D_offset(&in, in_x, in_y, z, w)); } } /** Calculate the space to batch conversion. (NHWC) * * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float * @note The input tensor batch size must be passed at compile time using -DBATCH_SIZE. e.g. -DBATCH_SIZE=2 * @note The block shape x must be passed at compile time using -DBLOCK_SHAPE_X. e.g. -DBLOCK_SHAPE_X=2 * @note The block shape y must be passed at compile time using -DBLOCK_SHAPE_Y. e.g. -DBLOCK_SHAPE_Y=2 * @note The starting pad value of x must be passed at compile time using -DPAD_LEFT_X. e.g. -DPAD_LEFT_X=2 * @note The ending pad value of x must be passed at compile time using -DPAD_RIGHT_X. e.g. -DPAD_RIGHT_X=2 * @note The starting pad value of y must be passed at compile time using -DPAD_LEFT_Y. e.g. -DPAD_LEFT_Y=2 * @note The ending pad value of y must be passed at compile time using -DPAD_RIGHT_Y. e.g. -DPAD_RIGHT_X=2 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image * @param[in] batch_id The output tensor batch id * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image */ __kernel void space_to_batch_static_nhwc( TENSOR4D_DECLARATION(input), const int batch_id, TENSOR3D_DECLARATION(output)) { Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(input, 0); Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output); int block_x = BLOCK_SHAPE_X; int block_y = BLOCK_SHAPE_Y; const int out_x = get_global_id(1); const int out_y = get_global_id(2); const int z = get_global_id(0); const int pos_x = out_x * block_x + ((batch_id / BATCH_IN) % block_x); const int pos_y = out_y * block_y + ((batch_id / BATCH_IN) / block_x); if(pos_y >= PAD_LEFT_Y && pos_y < PAD_LEFT_Y + HEIGHT_IN && pos_x >= PAD_LEFT_X && pos_x < PAD_LEFT_X + WIDTH_IN) { const int w = batch_id % BATCH_IN; const int in_x = pos_x - PAD_LEFT_X; const int in_y = pos_y - PAD_LEFT_Y; *((__global DATA_TYPE *)out.ptr) = *((__global DATA_TYPE *)tensor4D_offset(&in, z, in_x, in_y, w)); } } #endif // defined(BATCH_SIZE) && defined(DATA_TYPE) && defined(BLOCK_SHAPE_X) && defined(BLOCK_SHAPE_Y) && defined(PAD_LEFT_X) && defined(PAD_RIGHT_X) && defined(PAD_LEFT_Y) && defined(PAD_RIGHT_Y) && defined(WIDTH_IN) && defined(HEIGHT_IN)