/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #ifdef FIXED_POINT_POSITION #include "fixed_point.h" #define MAX_OP(x, y, type, size) MAX_OP_EXPAND(x, y, type, size) #define ADD_OP(x, y, type, size) ADD_SAT_OP_EXPAND((x), (y), type, size) #define SUB_OP(x, y, type, size) SUB_SAT_OP_EXPAND((x), (y), type, size) #define MUL_OP(x, y, type, size) MUL_SAT_OP_EXPAND((x), (y), type, size, FIXED_POINT_POSITION) #define DIV_OP(x, y, type, size) DIV_SAT_OP_VEC_EXPAND((x), (y), type, size, FIXED_POINT_POSITION) #define EXP_OP(x, type, size) EXP_OP_EXPAND((x), type, size, FIXED_POINT_POSITION) #define MIN_VAL_EXPAND(type) type##_MIN #define MIN_VAL(type) MIN_VAL_EXPAND(type) #define MINVAL MIN_VAL(DATA_TYPE) #define SELECT_DATA_TYPE EXPAND(DATA_TYPE) #else /* FIXED_POINT_POSITION */ #define MAX_OP(x, y, type, size) max((x), (y)) #define ADD_OP(x, y, type, size) ((x) + (y)) #define SUB_OP(x, y, type, size) ((x) - (y)) #define MUL_OP(x, y, type, size) ((x) * (y)) #define DIV_OP(x, y, type, size) ((x) / (y)) #define EXP_OP(x, type, size) exp((x)) #ifdef USE_F16 #define MINVAL -HALF_MAX #define SELECT_DATA_TYPE short #else /* USE_F16 */ #define MINVAL -FLT_MAX #define SELECT_DATA_TYPE int #endif /* USE_F16 */ #endif /* FIXED_POINT_POSITION */ __constant VEC_DATA_TYPE(DATA_TYPE, 16) type_min = (VEC_DATA_TYPE(DATA_TYPE, 16))(MINVAL); __constant uint16 idx16 = (uint16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); /** Identifies the maximum value across the 1st dimension. * * @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short * @note Fixed point position must be given as a preprocessor argument using -DFIXED_POINT_POSITION=pos. e.g. DFIXED_POINT_POSITION=4 * @note In case the input is not multiple of 16 -DNON_MULTIPLE_OF_16 must be passed. * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: QS8/QS16/F16/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] width Input image width */ __kernel void softmax_layer_max( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst), uint width) { Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src); Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); // Initialize local maximum VEC_DATA_TYPE(DATA_TYPE, 16) max_val = (VEC_DATA_TYPE(DATA_TYPE, 16))type_min; // Calculate max of row const uint width4 = width >> 4; for(uint i = 0; i < width4; i++) { VEC_DATA_TYPE(DATA_TYPE, 16) data = vload16(0, (__global DATA_TYPE *)offset(&src, i << 4, 0)); max_val = MAX_OP(data, max_val, DATA_TYPE, 16); } #ifdef NON_MULTIPLE_OF_16 // Handle non multiple of 16 VEC_DATA_TYPE(DATA_TYPE, 16) data = vload16(0, (__global DATA_TYPE *)offset(&src, width4 << 4, 0)); VEC_DATA_TYPE(SELECT_DATA_TYPE, 16) widx = CONVERT(((uint16)(width4 << 4) + idx16) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, 16)); max_val = MAX_OP(max_val, select(type_min, data, widx), DATA_TYPE, 16); #endif /* NON_MULTIPLE_OF_16 */ // Perform max reduction max_val.s01234567 = MAX_OP(max_val.s01234567, max_val.s89ABCDEF, DATA_TYPE, 8); max_val.s0123 = MAX_OP(max_val.s0123, max_val.s4567, DATA_TYPE, 4); max_val.s01 = MAX_OP(max_val.s01, max_val.s23, DATA_TYPE, 2); max_val.s0 = MAX_OP(max_val.s0, max_val.s1, DATA_TYPE, 1); // Store result *((__global DATA_TYPE *)dst.ptr) = max_val.s0; } /** Shifts the values of the input tensor by the max calculated in softmax_layer_max kernel, * then gets the exponent of each element as sums all elements across each row. * * @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short * @note Fixed point position must be given as a preprocessor argument using -DFIXED_POINT_POSITION=pos. e.g. DFIXED_POINT_POSITION=4 * @note In case the input is not multiple of 16 -DNON_MULTIPLE_OF_16 must be passed. * @note Beta can be optionally passed at compile time using -DBETA (if undefined, assume it equals 1.0) * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: QS8/QS16/F16/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] max_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr * @param[in] max_stride_x Stride of the max values tensor in X dimension (in bytes) * @param[in] max_step_x max_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] max_stride_y Stride of the max values tensor in Y dimension (in bytes) * @param[in] max_step_y max_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] max_stride_z Stride of the max values tensor in Z dimension (in bytes) * @param[in] max_step_z max_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] max_offset_first_element_in_bytes The offset of the first element in the max values tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr * @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes) * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes) * @param[in] sum_step_y sum_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes) * @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor * @param[in] width Input image width */ __kernel void softmax_layer_shift_exp_sum( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(max), TENSOR3D_DECLARATION(dst), TENSOR3D_DECLARATION(sum), uint width) { Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src); Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); Image max = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(max); Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(sum); #ifdef BETA // Initialize beta VEC_DATA_TYPE(DATA_TYPE, 16) beta = (VEC_DATA_TYPE(DATA_TYPE, 16))BETA; #endif /* BETA */ // Load max value of 1D logits vector (row) DATA_TYPE max_val = *((__global DATA_TYPE *)offset(&max, 0, 0)); // Set sum vector VEC_DATA_TYPE(DATA_TYPE, 16) sum1D = 0; // Shift values, exp and sum const uint width4 = width >> 4; for(uint i = 0; i < width4; i++) { VEC_DATA_TYPE(DATA_TYPE, 16) data = vload16(0, (__global DATA_TYPE *)offset(&src, i << 4, 0)); data = SUB_OP(data, max_val, DATA_TYPE, 16); #ifdef BETA data = MUL_OP(data, beta, DATA_TYPE, 16); #endif /* BETA */ data = EXP_OP(data, DATA_TYPE, 16); vstore16(data, 0, (__global DATA_TYPE *)offset(&dst, i << 4, 0)); sum1D = ADD_OP(sum1D, data, DATA_TYPE, 16); } #ifdef NON_MULTIPLE_OF_16 // Handle non multiple of 16 VEC_DATA_TYPE(DATA_TYPE, 16) data = vload16(0, (__global DATA_TYPE *)offset(&src, width4 << 4, 0)); data = SUB_OP(data, max_val, DATA_TYPE, 16); #ifdef BETA data = MUL_OP(data, beta, DATA_TYPE, 16); #endif /* BETA */ data = EXP_OP(data, DATA_TYPE, 16); VEC_DATA_TYPE(SELECT_DATA_TYPE, 16) widx = CONVERT(((uint16)(width4 << 4) + idx16) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, 16)); data = select(0, data, widx); vstore16(data, 0, (__global DATA_TYPE *)offset(&dst, width4 << 4, 0)); sum1D = ADD_OP(sum1D, data, DATA_TYPE, 16); #endif /* NON_MULTIPLE_OF_16 */ // Perform min/max reduction sum1D.s01234567 = ADD_OP(sum1D.s01234567, sum1D.s89ABCDEF, DATA_TYPE, 8); sum1D.s0123 = ADD_OP(sum1D.s0123, sum1D.s4567, DATA_TYPE, 4); sum1D.s01 = ADD_OP(sum1D.s01, sum1D.s23, DATA_TYPE, 2); sum1D.s0 = ADD_OP(sum1D.s0, sum1D.s1, DATA_TYPE, 1); // Calculate and store result *((__global DATA_TYPE *)sum.ptr) = sum1D.s0; } /** Divides all the values of the input tensor by the sum calculated from softmax_layer_shift_exp_sum kernel. * * @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short * @note Fixed point position must be given as a preprocessor argument using -DFIXED_POINT_POSITION=pos. e.g. DFIXED_POINT_POSITION=4 * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: QS8/QS16/F16/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr * @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes) * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes) * @param[in] sum_step_y sum_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes) * @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void softmax_layer_norm( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(sum), TENSOR3D_DECLARATION(dst)) { Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src); Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(sum); // Load max value of 1D logits vector (row) DATA_TYPE sum_val = *((__global DATA_TYPE *)offset(&sum, 0, get_global_id(1))); VEC_DATA_TYPE(DATA_TYPE, 16) data = vload16(0, (__global DATA_TYPE *)offset(&src, 0, 0)); vstore16(DIV_OP(data, sum_val, DATA_TYPE, 16), 0, (__global DATA_TYPE *)offset(&dst, 0, 0)); }