/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" /** Perform a strided slice operation on a given input. * * @attention Supported tensor rank: up to 4 * * @attention Data type can be passed using the -DDATA_TYPE compile flag, e.g. -DDATA_TYPE=float * @attention Input and output tensor dephts should be given as a preprocessor arguments using -DSRC_DEPTH=size. and -DDST_DEPTH=size * @attention Absolute start coordinates for each dimension should be given as preprocessor -DSTART_index=value e.g. -DSTART_0=2 * @attention Strides for each dimension should be given as preprocessor -DSTRIDE_index=value e.g. -DSTRIDE_1=1 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes) * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes) * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void strided_slice( TENSOR4D_DECLARATION(input), TENSOR4D_DECLARATION(output)) { // Get pixels pointer Tensor4D input = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(input, SRC_DEPTH); Tensor4D output = CONVERT_TO_TENSOR4D_STRUCT(output, DST_DEPTH); int offset = 0; // Offset X #if defined(SHRINK_0) input.ptr += (int)START_0 * input_stride_x; #elif defined(START_0) && defined(STRIDE_0) && defined(VEC_SIZE) && defined(LAST_ACCESSED_X) // Check if access on width gets out of bounds // If it does shift access vector to access elements within bounds const int xi = (int)(get_global_id(0) * VEC_SIZE); offset = (int)START_0 + min(xi, (int)LAST_ACCESSED_X); input.ptr += offset * input_stride_x; output.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * output_stride_x; #elif defined(START_0) && defined(STRIDE_0) offset = (int)START_0 + (int)get_global_id(0) * (int)STRIDE_0; input.ptr += offset * input_stride_x; #endif // defined(START_0) && defined(STRIDE_0) // Offset Y #if defined(SHRINK_1) input.ptr += (int)START_1 * input_stride_y; #elif defined(START_1) && defined(STRIDE_1) #if defined(SHRINK_0) offset = (int)START_1 + (int)get_global_id(0) * (int)STRIDE_1; #else // defined(SHRINK_0) offset = (int)START_1 + (int)get_global_id(1) * (int)STRIDE_1; #endif // defined(SHRINK_0) input.ptr += offset * input_stride_y; #endif // defined(START_1) && defined(STRIDE_1) // Offset Z #if defined(SHRINK_2) input.ptr += (int)START_2 * input_stride_z; #elif defined(START_2) && defined(STRIDE_2) #if defined(SHRINK_1) && defined(SHRINK_0) offset = (int)START_2 + (int)get_global_id(0) * (int)STRIDE_2; #elif defined(SHRINK_1) || defined(SHRINK_0) offset = (int)START_2 + (int)get_global_id(1) * (int)STRIDE_2; #else // defined(SHRINK_1) && defined(SHRINK_0) offset = (int)START_2 + ((int)get_global_id(2) % (int)DST_DEPTH) * (int)STRIDE_2; #endif // defined(SHRINK_1) && defined(SHRINK_0) input.ptr += offset * input_stride_z; #endif // defined(START_2) && defined(STRIDE_2) // Offset depth #if defined(SHRINK_3) input.ptr += (int)START_3 * input_stride_w; #elif defined(START_3) && defined(STRIDE_3) #if defined(SHRINK_2) && defined(SHRINK_1) && defined(SHRINK_0) offset = (int)START_3 + (int)get_global_id(0) * (int)STRIDE_3; #elif !defined(SHRINK_2) && !defined(SHRINK_1) && !defined(SHRINK_0) offset = (int)START_3 + ((int)get_global_id(2) / (int)DST_DEPTH) * (int)STRIDE_3; #elif(defined(SHRINK_0) && defined(SHRINK_1)) || (defined(SHRINK_1) && defined(SHRINK_2)) || (defined(SHRINK_0) && defined(SHRINK_2)) offset = (int)START_3 + (int)get_global_id(1) * (int)STRIDE_3; #else // defined(SHRINK_2) && defined(SHRINK_1) && defined(SHRINK_0) offset = (int)START_3 + ((int)get_global_id(2) % (int)DST_DEPTH) * (int)STRIDE_3; #endif // defined(SHRINK_2) && defined(SHRINK_1) && defined(SHRINK_0) input.ptr += offset * input_stride_w; #endif // defined(START_3) && defined(STRIDE_3) // Store result #if defined(VEC_SIZE) && defined(LAST_ACCESSED_X) VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) val = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input.ptr)); VSTORE(VEC_SIZE) (val, 0, (__global DATA_TYPE *)(output.ptr)); #else // defined(VEC_SIZE) && defined(LAST_ACCESSED_X) *((__global DATA_TYPE *)(output.ptr)) = *((__global DATA_TYPE *)(input.ptr)); #endif // defined(VEC_SIZE) && defined(LAST_ACCESSED_X) }