/* * Copyright (c) 2018-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(DATA_TYPE) && defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) /** This function perform a select operation between two tensors when condition tensor has the same rank. * * @attention The data_type need to be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=uchar * @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * @attention Leftover size in the X dimension should be given as preprocessor argument using -DVEC_SIZE_LEFTOVER=value: e.g. x_dimension % VEC_SIZE * * @param[in] c_ptr Pointer to the source tensor. Supported data types: U8 * @param[in] c_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] c_step_x c_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] c_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] c_step_y c_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] c_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] c_step_z c_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] c_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] x_ptr Pointer to the source tensor. Supported data types: All * @param[in] x_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] x_step_x x_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] x_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] x_step_y x_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] x_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] x_step_z x_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] x_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] y_ptr Pointer to the source tensor. Supported data types: same as @p x_ptr * @param[in] y_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] y_step_x y_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] y_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] y_step_y y_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] y_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] y_step_z y_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] y_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] out_ptr Pointer to the destination tensor. Supported data types: same as @p x_ptr * @param[in] out_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] out_step_z out_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void select_same_rank( TENSOR3D_DECLARATION(c), TENSOR3D_DECLARATION(x), TENSOR3D_DECLARATION(y), TENSOR3D_DECLARATION(out)) { // Get pointers uint offset = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); __global uchar *c_addr = c_ptr + c_offset_first_element_in_bytes + offset + get_global_id(1) * c_step_y + get_global_id(2) * c_step_z; __global uchar *x_addr = x_ptr + x_offset_first_element_in_bytes + offset * sizeof(DATA_TYPE) + get_global_id(1) * x_step_y + get_global_id(2) * x_step_z; __global uchar *y_addr = y_ptr + y_offset_first_element_in_bytes + offset * sizeof(DATA_TYPE) + get_global_id(1) * y_step_y + get_global_id(2) * y_step_z; __global uchar *out_addr = out_ptr + out_offset_first_element_in_bytes + offset * sizeof(DATA_TYPE) + get_global_id(1) * out_step_y + get_global_id(2) * out_step_z; // Load values SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) in_c = CONVERT(VLOAD(VEC_SIZE)(0, c_addr), SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) in_x = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)x_addr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) in_y = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)y_addr); // Calculate result VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) res0 = select(in_y, in_x, in_c > (SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))0); // Boundary-aware store STORE_VECTOR_SELECT(res, DATA_TYPE, (__global DATA_TYPE *)out_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0); } /** This function perform a select operation between two tensors when condition tensor has a different rank. * * @attention The data_type need to be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=uchar * @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * @attention Leftover size in the X dimension should be given as preprocessor argument using -DVEC_SIZE_LEFTOVER=value: e.g. x_dimension % VEC_SIZE * * @param[in] c_ptr Pointer to the source tensor. Supported data types: U8 * @param[in] c_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] c_step_x c_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] c_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] x_ptr Pointer to the source tensor. Supported data types: All * @param[in] x_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] x_step_x x_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] x_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] x_step_y x_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] x_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] x_step_z x_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] x_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] y_ptr Pointer to the source tensor. Supported data types: same as @p x_ptr * @param[in] y_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] y_step_x y_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] y_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] y_step_y y_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] y_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] y_step_z y_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] y_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] out_ptr Pointer to the destination tensor. Supported data types: same as @p x_ptr * @param[in] out_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] out_step_z out_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void select_different_rank_2( VECTOR_DECLARATION(c), TENSOR3D_DECLARATION(x), TENSOR3D_DECLARATION(y), TENSOR3D_DECLARATION(out)) { const int c_idx = get_global_id(1); // Get pointers uint offset = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); __global uchar *c_addr = c_ptr + c_offset_first_element_in_bytes; __global uchar *x_addr = x_ptr + x_offset_first_element_in_bytes + offset * sizeof(DATA_TYPE) + get_global_id(1) * x_step_y + get_global_id(2) * x_step_z; __global uchar *y_addr = y_ptr + y_offset_first_element_in_bytes + offset * sizeof(DATA_TYPE) + get_global_id(1) * y_step_y + get_global_id(2) * y_step_z; __global uchar *out_addr = out_ptr + out_offset_first_element_in_bytes + offset * sizeof(DATA_TYPE) + get_global_id(1) * out_step_y + get_global_id(2) * out_step_z; // Load values SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) in_c = *((__global uchar *)(c_addr + c_idx * c_stride_x)); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) in_x = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)x_addr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) in_y = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)y_addr); // Calculate result VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) res0 = select(in_y, in_x, in_c > (SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))0); // Boundary-aware store STORE_VECTOR_SELECT(res, DATA_TYPE, (__global DATA_TYPE *)out_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0); } #endif /* defined(DATA_TYPE) && defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) */ #if defined(DATA_TYPE) && defined(VEC_SIZE) && defined(DEPTH_SIZE) && defined(VEC_SIZE_LEFTOVER) /** This function perform a select operation between two tensors when condition tensor has a different rank. * * @attention The data_type need to be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=uchar * @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * @attention Leftover size in the X dimension should be given as preprocessor argument using -DVEC_SIZE_LEFTOVER=value: e.g. x_dimension % VEC_SIZE * * @param[in] c_ptr Pointer to the source tensor. Supported data types: U8 * @param[in] c_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] c_step_x c_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] c_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] x_ptr Pointer to the source tensor. Supported data types: All * @param[in] x_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] x_step_x x_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] x_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] x_step_y x_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] x_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] x_step_z x_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] x_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] y_ptr Pointer to the source tensor. Supported data types: same as @p x_ptr * @param[in] y_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] y_step_x y_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] y_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] y_step_y y_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] y_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] y_step_z y_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] y_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] out_ptr Pointer to the destination tensor. Supported data types: same as @p x_ptr * @param[in] out_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] out_step_z out_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void select_different_rank_n( VECTOR_DECLARATION(c), TENSOR3D_DECLARATION(x), TENSOR3D_DECLARATION(y), TENSOR3D_DECLARATION(out)) { const int c_idx = get_global_id(2) / DEPTH_SIZE; // Get pointers uint offset = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); __global uchar *c_addr = c_ptr + c_offset_first_element_in_bytes; __global uchar *x_addr = x_ptr + x_offset_first_element_in_bytes + offset * sizeof(DATA_TYPE) + get_global_id(1) * x_step_y + get_global_id(2) * x_step_z; __global uchar *y_addr = y_ptr + y_offset_first_element_in_bytes + offset * sizeof(DATA_TYPE) + get_global_id(1) * y_step_y + get_global_id(2) * y_step_z; __global uchar *out_addr = out_ptr + out_offset_first_element_in_bytes + offset * sizeof(DATA_TYPE) + get_global_id(1) * out_step_y + get_global_id(2) * out_step_z; // Load values SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) in_c = *((__global uchar *)(c_addr + c_idx * c_stride_x)); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) in_x = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)x_addr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) in_y = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)y_addr); // Calculate result VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) res0 = select(in_y, in_x, in_c > (SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))0); // Boundary-aware store STORE_VECTOR_SELECT(res, DATA_TYPE, (__global DATA_TYPE *)out_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0); } #endif /* defined(DATA_TYPE) && defined(VEC_SIZE) && defined(DEPTH_SIZE) && defined(VEC_SIZE_LEFTOVER) */