/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(DATA_TYPE) && defined(NUM_REVERSE_DIMS) #if NUM_REVERSE_DIMS > 4 #error("Reversing more than 4 dimensions is not currently supported") #endif /* NUM_REVERSE_DIMS > 4 */ /** Performs reverse along the specified axis. * * @note The data type must be given as a preprocessor argument using -DDATA_TYPE=num. e.g. -DDATA_TYPE=uint * @note The number of dimensions to reverse must be given as a preprocessor argument using -DNUM_REVERSE_DIMS=num, e.g. -DNUM_REVERSE_DIMS=3 * * @param[in] src_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32 * @param[in] src_stride_x Stride of the first source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the first source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the first source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the first source tensor * @param[in] axis_ptr Pointer to the source vector. Supported data types: U32 * @param[in] axis_stride_x Stride of the first source tensor in X dimension (in bytes) * @param[in] axis_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] axis_offset_first_element_in_bytes The offset of the first element in the first source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void reverse(TENSOR4D_DECLARATION(src), VECTOR_DECLARATION(axis), TENSOR4D_DECLARATION(dst), const uint width, const uint height, const uint depth, const uint batches) { Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, depth); Vector axis = CONVERT_TO_VECTOR_STRUCT_NO_STEP(axis); Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(dst, depth); const uint x_in = get_global_id(0); const uint y_in = get_global_id(1); const uint z_in = get_global_id(2) % depth; const uint w_in = get_global_id(2) / depth; const uint4 dims = (uint4)(0, 1, 2, 3); int4 to_reverse = (int4)(0, 0, 0, 0); #if NUM_REVERSE_DIMS == 1 const uint index = *((__global uint *)axis.ptr); to_reverse = (uint4)index == dims; #elif NUM_REVERSE_DIMS == 2 const uint2 indices = vload2(0, (__global uint *)axis.ptr); to_reverse = ((uint4)indices.s0 == dims) || ((uint4)indices.s1 == dims); #elif NUM_REVERSE_DIMS == 3 const uint2 indices01 = vload2(0, (__global uint *)axis.ptr); const uint index2 = *((__global uint *)axis.ptr + 2); to_reverse = ((uint4)indices01.s0 == dims) || ((uint4)indices01.s1 == dims) || ((uint4)index2 == dims); #else /* NUM_REVERSE_DIMS == 3 */ const uint4 indices = vload4(0, (__global uint *)axis.ptr); to_reverse = ((uint4)indices.s0 == dims) || ((uint4)indices.s1 == dims) || ((uint4)indices.s2 == dims) || ((uint4)indices.s3 == dims); #endif /* NUM_REVERSE_DIMS == 1 */ const uint x_out = to_reverse.s0 ? width - x_in - 1 : x_in; const uint y_out = to_reverse.s1 ? height - y_in - 1 : y_in; const uint z_out = to_reverse.s2 ? depth - z_in - 1 : z_in; const uint w_out = to_reverse.s3 ? batches - w_in - 1 : w_in; *((__global DATA_TYPE *)tensor4D_offset(&dst, x_out, y_out, z_out, w_out)) = *((__global DATA_TYPE *)src.ptr); } #endif // defined(DATA_TYPE) && defined(NUM_REVERSE_DIMS)