/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(SATURATE) #define CONVERT_OP_INT_STR(x, type, size) (convert_##type##size##_sat(x)) #else // SATURATE #define CONVERT_OP_INT_STR(x, type, size) (convert_##type##size(x)) #endif // SATURATE #define CONVERT_OP_INT(x, type, size) CONVERT_OP_INT_STR(x, type, size) #define MUL_OP(x, y, scale, type, size) CONVERT_OP_INT((x) * (y) >> scale, type, size) #define CONVERT_RTE(x, type) (convert_##type##_rte((x))) #define CONVERT_DOWN(x, type) CONVERT_RTE(x, type) #if defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(DATA_TYPE_RES) && defined(DATA_TYPE_OUT) /** Performs a pixelwise multiplication with integer scale of integer inputs. * * @attention The inputs and output data types need to be passed at compile time using -DDATA_TYPE_IN1, -DDATA_TYPE_IN2 and -DDATA_TYPE_OUT: * e.g. -DDATA_TYPE_IN1=uchar -DDATA_TYPE_IN2=ushort -DDATA_TYPE_OUT=short * @attention The data_type of the intermediate result of the multiplication should passed as well using -DDATA_TYPE_RES. * e.g. If one of inputs is S16 -DDATA_TYPE_RES=int should be passed else -DDATA_TYPE_RES=short. * * @param[in] in1_ptr Pointer to the source image. Supported data types: U8/S16 * @param[in] in1_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in1_step_x in1_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in1_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in1_step_y in1_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in1_stride_z Stride of the source image in Y dimension (in bytes) * @param[in] in1_step_z in1_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] in1_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] in2_ptr Pointer to the source image. Supported data types: same as @p in1_ptr * @param[in] in2_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in2_step_x in2_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in2_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in2_step_y in2_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in2_stride_z Stride of the source image in Y dimension (in bytes) * @param[in] in2_step_z in2_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] in2_offset_first_element_in_bytes The offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: same as @p in1_ptr * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_z out_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image * @param[in] scale Integer scaling factor. Supported data types: S32. */ __kernel void pixelwise_mul_int( TENSOR3D_DECLARATION(in1), TENSOR3D_DECLARATION(in2), TENSOR3D_DECLARATION(out), const uint scale) { // Get pixels pointer Tensor3D in1 = CONVERT_TO_TENSOR3D_STRUCT(in1); Tensor3D in2 = CONVERT_TO_TENSOR3D_STRUCT(in2); Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out); // Load data VEC_DATA_TYPE(DATA_TYPE_RES, 16) in1_data = CONVERT(vload16(0, (__global DATA_TYPE_IN1 *)in1.ptr), VEC_DATA_TYPE(DATA_TYPE_RES, 16)); VEC_DATA_TYPE(DATA_TYPE_RES, 16) in2_data = CONVERT(vload16(0, (__global DATA_TYPE_IN2 *)in2.ptr), VEC_DATA_TYPE(DATA_TYPE_RES, 16)); // Perform multiplication and store result vstore16(MUL_OP(in1_data, in2_data, scale, DATA_TYPE_OUT, 16), 0, (__global DATA_TYPE_OUT *)out.ptr); } #endif /* defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(DATA_TYPE_RES) && defined(DATA_TYPE_OUT) */ #if defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) && defined(DATA_TYPE_OUT) && defined(VEC_SIZE) #define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE) #define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE) #define VEC_TYPE VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE) /** Performs a pixelwise multiplication with float scale of quantized inputs. * * @note The quantization offset of the first operand must be passed at compile time only if asymmetric using -DOFFSET_IN1, e.g. -DOFFSET_IN1=10 * @note The quantization offset of the second operand must be passed at compile time only if asymmetric using -DOFFSET_IN2, e.g. -DOFFSET_IN2=10 * @note The quantization offset of the output must be passed at compile time only if asymmetric using -DOFFSET_OUT, e.g. -DOFFSET_OUT=10 * @note The quantization scale of the first operand must be passed at compile time using -DSCALE_IN1, e.g. -DSCALE_IN1=10 * @note The quantization scale of the second operand must be passed at compile time using -DSCALE_IN2, e.g. -DSCALE_IN2=10 * @note The quantization scale of the output must be passed at compile time using -DSCALE_OUT, e.g. -DSCALE_OUT=10 * @note To perform saturating operation -DSATURATE has to be passed to the compiler otherwise wrapping policy will be used. * @attention The data type must be passed at compile time using -DDATA_TYPE_OUT, i.e. -DDATA_TYPE_OUT=uchar * @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * * @param[in] in1_ptr Pointer to the source image. Supported data types: QASYMM8/QSYMM16 * @param[in] in1_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in1_step_x in1_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in1_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in1_step_y in1_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in1_stride_z Stride of the source image in Y dimension (in bytes) * @param[in] in1_step_z in1_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] in1_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] in2_ptr Pointer to the source image. Supported data types: U8, S16, F16, F32 * @param[in] in2_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in2_step_x in2_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in2_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in2_step_y in2_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in2_stride_z Stride of the source image in Y dimension (in bytes) * @param[in] in2_step_z in2_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] in2_offset_first_element_in_bytes The offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: U8, S16, F16, F32 * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_z out_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image * @param[in] scale Float scaling factor. Supported data types: F32 */ __kernel void pixelwise_mul_quantized( TENSOR3D_DECLARATION(in1), TENSOR3D_DECLARATION(in2), TENSOR3D_DECLARATION(out), const float scale) { // Get pixels pointer Tensor3D in1 = CONVERT_TO_TENSOR3D_STRUCT(in1); Tensor3D in2 = CONVERT_TO_TENSOR3D_STRUCT(in2); Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out); // Load data VEC_INT in_a = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_OUT *)in1.ptr), VEC_INT); VEC_INT in_b = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_OUT *)in2.ptr), VEC_INT); // Dequantize #if defined(OFFSET_IN1) in_a -= (VEC_INT)((int)OFFSET_IN1); #endif // defined(OFFSET_IN1) #if defined(OFFSET_IN2) in_b -= (VEC_INT)((int)OFFSET_IN2); #endif // defined(OFFSET_IN2) const VEC_FLOAT in1f32 = CONVERT(in_a, VEC_FLOAT) * (VEC_FLOAT)((float)SCALE_IN1); const VEC_FLOAT in2f32 = CONVERT(in_b, VEC_FLOAT) * (VEC_FLOAT)((float)SCALE_IN2); #if defined(OFFSET_OUT) const VEC_FLOAT qresf32 = (in1f32 * in2f32 * scale) / ((VEC_FLOAT)(float)SCALE_OUT) + ((VEC_FLOAT)((float)OFFSET_OUT)); #else // defined(OFFSET_OUT) const VEC_FLOAT qresf32 = (in1f32 * in2f32 * scale) / ((VEC_FLOAT)(float)SCALE_OUT); #endif // defined(OFFSET_OUT) const VEC_TYPE res = CONVERT_SAT(CONVERT_DOWN(qresf32, VEC_INT), VEC_TYPE); // Store result VSTORE(VEC_SIZE) (res, 0, (__global DATA_TYPE_OUT *)out.ptr); } #endif /* defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) && defined(DATA_TYPE_OUT) && defined(VEC_SIZE) */