/* * Copyright (c) 2016-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(DEPTH_OUT) /** Performs scale on an image interpolating with the NEAREAST NEIGHBOUR method. Input and output are single channel F32. (NHWC) * * @note Sampling policy to used is passed as -DSAMPLING_POLICY_(TYPE) e.g. -DSAMPLING_POLICY_TOP_LEFT * @note Output tensor's depth should be given as a preprocessor argument using -DDEPTH_OUT=size. e.g. -DDEPTH=16 * * @param[in] in_ptr Pointer to the source image. Supported data types: U8/S16/F16/F32. * @param[in] in_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in_stride_z Stride of the source image in Z dimension (in bytes) * @param[in] in_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] in_offset_first_element_in_bytes The offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: same as @p in_ptr * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the destination image in Z dimension (in bytes) * @param[in] out_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image */ __kernel void scale_nearest_neighbour_nhwc( TENSOR4D_DECLARATION(in), TENSOR4D_DECLARATION(out)) { Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(in, 0); Tensor4D out = CONVERT_TO_TENSOR4D_STRUCT(out, DEPTH_OUT); #ifdef SAMPLING_POLICY_TOP_LEFT float new_x = get_global_id(1) * SCALE_X; float new_y = (get_global_id(2) % DEPTH_OUT) * SCALE_Y; #elif SAMPLING_POLICY_CENTER float new_x = (get_global_id(1) + 0.5f) * SCALE_X; float new_y = ((get_global_id(2) % DEPTH_OUT) + 0.5f) * SCALE_Y; #else /* SAMPLING_POLICY */ #error("Unsupported sampling policy"); #endif /* SAMPLING_POLICY */ #ifdef ALIGN_CORNERS new_x = round(new_x); new_y = round(new_y); #endif /* ALIGN_CORNERS */ const float clamped_x = clamp(new_x, 0.0f, (float)SRC_WIDTH - 1); const float clamped_y = clamp(new_y, 0.0f, (float)SRC_HEIGHT - 1); *((__global DATA_TYPE *)out.ptr) = *((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x), convert_int(clamped_y), (get_global_id(2) / DEPTH_OUT))); } /** Performs scale on an image interpolating with the BILINEAR method. (NHWC) * * @note Sampling policy to be used is passed as -DSAMPLING_POLICY_(TYPE) e.g. -DSAMPLING_POLICY_TOP_LEFT * @note If border mode replicate is used, is should be passed as -DBORDER_MODE_REPLICATE * @note Output tensor's depth should be given as a preprocessor argument using -DDEPTH_OUT=size. e.g. -DDEPTH=16 * @note The value to be used at the edges of the images shoud be given as a preprocessor argument using -DCONSTANT_VALUE=value. * * @param[in] in_ptr Pointer to the source image. Supported data types: U8/S16/F16/F32. * @param[in] in_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in_stride_z Stride of the source image in Z dimension (in bytes) * @param[in] in_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] in_offset_first_element_in_bytes The offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: same as @p in_ptr * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the destination image in Z dimension (in bytes) * @param[in] out_step_z dst_stride_y * number of elements along Z processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image * */ __kernel void scale_bilinear_nhwc( TENSOR4D_DECLARATION(in), TENSOR4D_DECLARATION(out)) { Tensor4D in = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(in, 0); Tensor4D out = CONVERT_TO_TENSOR4D_STRUCT(out, DEPTH_OUT); #ifdef SAMPLING_POLICY_TOP_LEFT const float new_x = get_global_id(1) * SCALE_X; const float new_y = (get_global_id(2) % DEPTH_OUT) * SCALE_Y; #elif SAMPLING_POLICY_CENTER const float new_x = (get_global_id(1) + 0.5f) * SCALE_X - 0.5f; const float new_y = ((get_global_id(2) % DEPTH_OUT) + 0.5f) * SCALE_Y - 0.5f; #else /* SAMPLING_POLICY */ #error("Unsupported sampling policy"); #endif /* SAMPLING_POLICY */ const float new_xf = floor(new_x); const float new_yf = floor(new_y); const float clamped_x = clamp(new_xf, 0.0f, SRC_WIDTH - 1.f); const float clamped_x1 = clamp(new_xf + 1, 0.0f, SRC_WIDTH - 1.f); const float clamped_y = clamp(new_yf, 0.0f, SRC_HEIGHT - 1.f); const float clamped_y1 = clamp(new_yf + 1, 0.0f, SRC_HEIGHT - 1.f); #if defined(OFFSET) && defined(SCALE) #define IN_DATA_TYPE int #else // defined(OFFSET) && defined(SCALE) #define IN_DATA_TYPE float #endif // defined(OFFSET) && defined(SCALE) #ifndef BORDER_MODE_REPLICATE const bool check_x = (0.f <= new_xf && new_xf < (float)SRC_WIDTH); const bool check_x1 = (-1.f <= new_xf && new_xf < SRC_WIDTH - 1.f); const bool check_y = (0.f <= new_yf && new_yf < (float)SRC_HEIGHT); const bool check_y1 = (-1.f <= new_yf && new_yf < SRC_HEIGHT - 1.f); const IN_DATA_TYPE ins_0 = select((IN_DATA_TYPE)(CONSTANT_VALUE), (IN_DATA_TYPE)(*((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x), convert_int(clamped_y), (get_global_id(2) / DEPTH_OUT)))), check_x && check_y); const IN_DATA_TYPE ins_1 = select((IN_DATA_TYPE)(CONSTANT_VALUE), (IN_DATA_TYPE)(*((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x1), convert_int(clamped_y), (get_global_id(2) / DEPTH_OUT)))), check_x1 && check_y); const IN_DATA_TYPE ins_2 = select((IN_DATA_TYPE)(CONSTANT_VALUE), (IN_DATA_TYPE)(*((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x), convert_int(clamped_y1), (get_global_id(2) / DEPTH_OUT)))), check_x && check_y1); const IN_DATA_TYPE ins_3 = select((IN_DATA_TYPE)(CONSTANT_VALUE), (IN_DATA_TYPE)(*((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x1), convert_int(clamped_y1), (get_global_id(2) / DEPTH_OUT)))), check_x1 && check_y1); VEC_DATA_TYPE(IN_DATA_TYPE, 4) ins = (VEC_DATA_TYPE(IN_DATA_TYPE, 4))(ins_0, ins_1, ins_2, ins_3); #else /* BORDER_MODE_REPLICATE */ VEC_DATA_TYPE(IN_DATA_TYPE, 4) ins = (VEC_DATA_TYPE(IN_DATA_TYPE, 4))(*((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x), convert_int(clamped_y), (get_global_id(2) / DEPTH_OUT))), *((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x1), convert_int(clamped_y), (get_global_id(2) / DEPTH_OUT))), *((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x), convert_int(clamped_y1), (get_global_id(2) / DEPTH_OUT))), *((__global DATA_TYPE *)tensor4D_offset(&in, get_global_id(0), convert_int(clamped_x1), convert_int(clamped_y1), (get_global_id(2) / DEPTH_OUT)))); #endif /* BORDER_MODE_REPLICATE */ const float a = new_x - new_xf; const float b = 1.f - a; const float a1 = new_y - new_yf; const float b1 = 1.f - a1; #if defined(OFFSET) && defined(SCALE) const float4 insf32 = convert_float4(ins - (int4)OFFSET) * (float4)SCALE; const float fr = ((insf32.s0 * b * b1) + (insf32.s1 * a * b1) + (insf32.s2 * b * a1) + (insf32.s3 * a * a1)); DATA_TYPE res = CONVERT_SAT(convert_int_sat_rtp(fr / SCALE) + OFFSET, DATA_TYPE); *((__global DATA_TYPE *)out.ptr) = res; #else // defined(OFFSET) && defined(SCALE) const float fr = ((ins.s0 * b * b1) + (ins.s1 * a * b1) + (ins.s2 * b * a1) + (ins.s3 * a * a1)); *((__global DATA_TYPE *)out.ptr) = CONVERT(fr, DATA_TYPE); #endif // defined(OFFSET) && defined(SCALE) } #endif /* defined(DEPTH_OUT) */