/* * Copyright (c) 2021-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #include "tile_helpers.h" //! @cond Doxygen_Suppress /** OpenCL kernel to compute the direct convolution 3d. * * @note Data layout supported: NDHWC * @note Data type supported: F32/F16/QASYMM8/QASYMM8_SIGNED * @note The accumulation data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE_PROMOTED=half) * @note The convolution padding (left, top and front) must be passed at compile time using -DPAD_LEFT, -DPAD_TOP and -DPAD_FRONT (e.g. -DPAD_LEFT=2, -DPAD_TOP=2, -DPAD_FRONT=2) * @note The convolution strides must be passed at compile time using -DSTRIDE_X, -DSTRIDE_Y and -DSTRIDE_Z (e.g. -DSTRIDE_X=2, -DSTRIDE_Y=2, -DSTRIDE_Z=2) * @note The spatial dimensions of the weights must be passed at compile time using -DWEI_WIDTH, -DWEI_HEIGHT and -DWEI_DEPTH (e.g. -DWEI_WIDTH=9, -DWEI_HEIGHT=9, -DWEI_DEPTH=9) * @note The spatial dimensions of the source tensor must be passed at compile time using -DSRC_WIDTH, -DSRC_HEIGHT and -DSRC_DEPTH (e.g. -DSRC_WIDTH=96, -DSRC_HEIGHT=64, -DSRC_DEPTH=32) * @note The spatial dimensions of the destination tensor must be passed at compile time using -DDST_WIDTH, -DDST_HEIGHT and -DDST_DEPTH (e.g. -DDST_WIDTH=96, -DDST_HEIGHT=64, -DDST_DEPTH=32) * @note The channels of the source tensor must be passed at compile time using -DSRC_CHANNELS (e.g. -DSRC_CHANNELS=64) * @note The channels of the destination tensor must be passed at compile time using -DDST_CHANNELS (e.g. -DDST_CHANNELS=64) * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=half) * @note The data type of the accumulators must be passed at compile time using -DACC_DATA_TYPE (e.g. -DACC_DATA_TYPE=float) * @note The number of M0 rows (width*height) to process must be passed at compile time using -DM0 (e.g. -DM0=2) * @note The number of N0 output channels to process must be passed at compile time using -DN0 (e.g. -DN0=2) * @note The number of K0 inner accumulations must be passed at compile time using -DK0 (e.g. -DK0=2) * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_N0 (e.g. -DPARTIAL_N0=1) * @note The zero value must be passed at compile time using -DZERO_VALUE (e.g. -DZERO_VALUE=0) * @note Only the following configurations of M0, N0 and K0 are currently supported: * - M0 = 1, 2, 3, 4, 5, .... n * - N0 = 2, 3, 4, 8, 16 * - K0 = 2, 3, 4, 8, 16 * * @note In case of QASYMM8/QASYMM8_SIGNED, the following extra information must be passed at compile time: * - -DIS_QUANTIZED * - The destination quantization multiplier e.g. -DDST_MULTIPLIER=1234 * - The destination quantization shift e.g. -DDST_SHIFT=4 * - The destination offset e.g. -DDST_OFFSET=4 * - The source offset e.g. -DSRC_OFFSET=4 * - The weights offset e.g. -DWEI_OFFSET=4 * - The quantized zero value e.g. -DZERO_VALUE=4 * * @note If biases are used then -DHAS_BIAS has to be passed at compile time along with its tensor type by using -DBIA_DATA_TYPE (e.g. -DBIA_DATA_TYPE=int). * * @param[in] src_ptr Pointer to the source tensor. Supported data type: F16/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes) * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data type: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes) * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] wei_ptr Pointer to the weights tensor. Supported data type: same as @p src_ptr * @param[in] wei_stride_x Stride of the weights tensor in X dimension (in bytes) * @param[in] wei_step_x wei_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] wei_stride_y Stride of the weights tensor in Y dimension (in bytes) * @param[in] wei_step_y wei_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] wei_stride_z Stride of the weights tensor in Z dimension (in bytes) * @param[in] wei_step_z wei_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] wei_stride_w Stride of the weights tensor in W dimension (in bytes) * @param[in] wei_step_w wei_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] wei_offset_first_element_in_bytes The offset of the first element in the weights matrix * @param[in] bia_ptr (Optional) Pointer to the bias tensor Supported data type: same as @p src_ptr * @param[in] bia_stride_x (Optional) Stride of the bias tensor in X dimension (in bytes) * @param[in] bia_step_x (Optional) bia_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] bia_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix */ //! @endcond __kernel void direct_convolution3d_ndhwc( TENSOR4D(src, BUFFER), TENSOR4D(dst, BUFFER), TENSOR4D(wei, BUFFER) #if defined(HAS_BIAS) , VECTOR_DECLARATION(bia) #endif // defined(HAS_BIAS) ) { #define _IWEI_WIDTH WEI_WIDTH #define _IWEI_HEIGHT WEI_HEIGHT #define _IWEI_DEPTH WEI_DEPTH #define _ISRC_WIDTH SRC_WIDTH #define _ISRC_HEIGHT SRC_HEIGHT #define _ISRC_DEPTH SRC_DEPTH #define _ISRC_CHANNELS SRC_CHANNELS #define _IDST_WIDTH DST_WIDTH #define _IDST_HEIGHT DST_HEIGHT #define _IDST_DEPTH DST_DEPTH #define _IDST_CHANNELS DST_CHANNELS #define _IY_MULTIPLIER (_IWEI_WIDTH * _IWEI_HEIGHT * _IWEI_DEPTH) // If quantized, the output tile has to be quantized first before being stored to global memory #if defined(IS_QUANTIZED) #define _IOUTPUT_TILE cq #else // defined(IS_QUANTIZED) #define _IOUTPUT_TILE c #endif // defined(IS_QUANTIZED) const int cout = GET_SPATIAL_IDX(0, N0, PARTIAL_N0); // OFM const int mout = GET_SPATIAL_IDX(1, M0, 0); // WIDTH x HEIGHT x DEPTH const int bout = GET_SPATIAL_IDX(2, 1, 0); // BATCH SIZE IDX TILE(int, M0, 1, xi); TILE(int, M0, 1, yi); TILE(int, M0, 1, zi); // Convert the linear index to coordinate LOOP_UNROLLING(int, i, 0, 1, M0, { xi[i].v = ((mout + i) % _IDST_WIDTH) * STRIDE_X; yi[i].v = (((mout + i) / _IDST_WIDTH) % _IDST_HEIGHT) * STRIDE_Y; zi[i].v = (((mout + i) / (_IDST_WIDTH * _IDST_HEIGHT)) % _IDST_DEPTH) * STRIDE_Z; xi[i].v -= PAD_LEFT; yi[i].v -= PAD_TOP; zi[i].v -= PAD_FRONT; }) // Initialize the accumulators TILE(ACC_DATA_TYPE, M0, N0, c); LOOP_UNROLLING(int, i, 0, 1, M0, { c[i].v = (ACC_DATA_TYPE)0; }) for(int i = 0; i < _IY_MULTIPLIER; ++i) { int ck = 0; int xk = i % _IWEI_WIDTH; int yk = (i / _IWEI_WIDTH) % _IWEI_HEIGHT; int zk = i / (_IWEI_WIDTH * _IWEI_HEIGHT); int k = 0; for(; k <= (_ISRC_CHANNELS - K0); k += K0) { TILE(DATA_TYPE, M0, K0, a); TILE(DATA_TYPE, N0, K0, b); LOOP_UNROLLING(int, i, 0, 1, M0, { a[i].v = ZERO_VALUE; }) // Load tile from the src tensor T_LOAD_NDHWC_INDIRECT(DATA_TYPE, M0, K0, BUFFER, src, bout, zk, yk, xk, ck, _ISRC_WIDTH, _ISRC_HEIGHT, _ISRC_DEPTH, src_stride_y, xi, yi, zi, a); // Load tile from the weights tensor const int b_offs = k + (xk * _ISRC_CHANNELS) + (yk * _ISRC_CHANNELS * _IWEI_WIDTH) + (zk * _ISRC_CHANNELS * _IWEI_WIDTH * _IWEI_HEIGHT); LOOP_UNROLLING(int, i, 0, 1, N0, { if((cout + i) < _IDST_CHANNELS) { LOOP_UNROLLING(int, j, 0, 1, K0, { b[i].s[j] = *(__global DATA_TYPE *)(wei_ptr + wei_offset_first_element_in_bytes + (cout + i) * sizeof(DATA_TYPE) + j * wei_stride_y + b_offs * wei_stride_y); }) } }) // Compute the matrix multiplication between two tiles T_MMUL(DATA_TYPE, DATA_TYPE, ACC_DATA_TYPE, M0, N0, K0, NT, T, a, b, c); // Apply the offset correction (correction usually needed for asymmetric quantized computation) // The computation is not performed if both SRC_OFFSET and WEI_OFFSET are zero T_OFFSET_CORRECTION(ACC_DATA_TYPE, M0, N0, K0, SRC_OFFSET, WEI_OFFSET, a, b, c); ck += K0; } #if((_ISRC_CHANNELS % K0) != 0) // Left-over accumulations for(; k < _ISRC_CHANNELS; ++k) { TILE(DATA_TYPE, M0, 1, a); TILE(DATA_TYPE, N0, 1, b); LOOP_UNROLLING(int, i, 0, 1, M0, { a[i].v = ZERO_VALUE; }) // Load tile from the src tensor T_LOAD_NDHWC_INDIRECT(DATA_TYPE, M0, 1, BUFFER, src, bout, zk, yk, xk, ck, _ISRC_WIDTH, _ISRC_HEIGHT, _ISRC_DEPTH, src_stride_y, xi, yi, zi, a); // Load tile from the weights tensor const int b_offs = k + (xk * _ISRC_CHANNELS) + (yk * _ISRC_CHANNELS * _IWEI_WIDTH) + (zk * _ISRC_CHANNELS * _IWEI_WIDTH * _IWEI_HEIGHT); LOOP_UNROLLING(int, i, 0, 1, N0, { if((cout + i) < _IDST_CHANNELS) { b[i].v = *(__global DATA_TYPE *)(wei_ptr + wei_offset_first_element_in_bytes + (cout + i) * sizeof(DATA_TYPE) + b_offs * wei_stride_y); } }) // // Compute the matrix multiplication between two tiles T_MMUL(DATA_TYPE, DATA_TYPE, ACC_DATA_TYPE, M0, N0, 1, NT, T, a, b, c); // Apply the offset correction (operation usually needed for asymmetric quantized computation) // The computation is not performed if both SRC_OFFSET and WEI_OFFSET are zero T_OFFSET_CORRECTION(ACC_DATA_TYPE, M0, N0, 1, SRC_OFFSET, WEI_OFFSET, a, b, c); ++ck; } #endif // ((_ISRC_CHANNELS % K0) != 0) } // Offset correction required for the quantized asymmetric computation // The computation is not performed if both SRC_OFFSET and WEI_OFFSET are zero T_ADD_CONSTANT(ACC_DATA_TYPE, M0, N0, c, (_IWEI_WIDTH * _IWEI_HEIGHT * _IWEI_DEPTH * _ISRC_CHANNELS * SRC_OFFSET * WEI_OFFSET), c); #if defined(HAS_BIAS) TILE(BIA_DATA_TYPE, 1, N0, bias0); if((cout + N0) <= _IDST_CHANNELS) { bias0[0].v = VLOAD(N0)(0, (__global BIA_DATA_TYPE *)(bia_ptr + bia_offset_first_element_in_bytes + cout * sizeof(BIA_DATA_TYPE))); } else { VLOAD_PARTIAL(N0, PARTIAL_N0) (bias0[0].v, 0, (__global BIA_DATA_TYPE *)(bia_ptr + bia_offset_first_element_in_bytes + cout * sizeof(BIA_DATA_TYPE))); } // c = c + bias[broadcasted] T_ELTWISE_BROADCAST_ADD_X(ACC_DATA_TYPE, M0, N0, c, bias0, c); #endif // HAS_BIAS TILE(uint, M0, 1, dst_indirect_y); // Calculate the destination indirect Y LOOP_UNROLLING(int, i, 0, 1, M0, { dst_indirect_y[i].v = (uint)min(mout + i, (int)(_IDST_WIDTH *_IDST_HEIGHT * _IDST_DEPTH) - 1); dst_indirect_y[i].v += bout * (int)(_IDST_WIDTH *_IDST_HEIGHT * _IDST_DEPTH); }) #if defined(IS_QUANTIZED) TILE(DATA_TYPE, M0, N0, cq); // Quantize the tile T_QUANTIZE8_ASYMMETRIC(ACC_DATA_TYPE, DATA_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, c, cq); #endif // defined(IS_QUANTIZED) bool x_cond = PARTIAL_N0 != 0 && get_global_id(0) == 0; // Store the tile in reverse order so the invalid values are overwritten with the valid ones T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_N0, BUFFER, dst, cout, dst_stride_y, x_cond, _IOUTPUT_TILE, dst_indirect_y); }