/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #include "types.h" #ifndef DATA_TYPE_MIN #define DATA_TYPE_MIN 0x0 #endif /* DATA_TYPE_MIN */ #ifndef DATA_TYPE_MAX #define DATA_TYPE_MAX 0xFF #endif /* DATA_TYPE_MAX */ inline int FloatFlip(float val) { union { int int_val; float flt_val; } u_val; u_val.flt_val = val; return (u_val.int_val >= 0) ? u_val.int_val : u_val.int_val ^ 0x7FFFFFFF; } __constant VEC_DATA_TYPE(DATA_TYPE, 16) type_min = (VEC_DATA_TYPE(DATA_TYPE, 16))(DATA_TYPE_MIN); __constant VEC_DATA_TYPE(DATA_TYPE, 16) type_max = (VEC_DATA_TYPE(DATA_TYPE, 16))(DATA_TYPE_MAX); __constant int16 idx16 = (int16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); /** This function identifies the min and maximum value of an input image. * * @note Input image data type must be passed as a preprocessor argument using -DDATA_TYPE. * Moreover, the minimum and maximum value of the given data type must be provided using -DDATA_TYPE_MIN and -DDATA_TYPE_MAX respectively. * @note In case image width is not a multiple of 16 then -DNON_MULTIPLE_OF_16 must be passed. * * @param[in] src_ptr Pointer to the source image. Supported data types: U8 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[out] min_max Pointer to buffer with minimum value in position 0 and maximum value in position 1 * @param[in] width Input image width */ __kernel void minmax( IMAGE_DECLARATION(src), __global int *min_max, int width) { Image src = CONVERT_TO_IMAGE_STRUCT(src); // Initialize local minimum and local maximum VEC_DATA_TYPE(DATA_TYPE, 16) local_min = type_max; VEC_DATA_TYPE(DATA_TYPE, 16) local_max = type_min; // Calculate min/max of row int i = 0; for(; i + 16 <= width; i += 16) { VEC_DATA_TYPE(DATA_TYPE, 16) data = vload16(0, (__global DATA_TYPE *)offset(&src, i, 0)); local_min = min(data, local_min); local_max = max(data, local_max); } #ifdef NON_MULTIPLE_OF_16 // Handle non multiple of 16 VEC_DATA_TYPE(DATA_TYPE, 16) data = vload16(0, (__global DATA_TYPE *)offset(&src, i, 0)); #ifdef IS_DATA_TYPE_FLOAT int16 valid_indices = (i + idx16) < width; #else /* IS_DATA_TYPE_FLOAT */ VEC_DATA_TYPE(DATA_TYPE, 16) valid_indices = CONVERT((i + idx16) < width, VEC_DATA_TYPE(DATA_TYPE, 16)); #endif /* IS_DATA_TYPE_FLOAT */ local_max = max(local_max, select(type_min, data, valid_indices)); local_min = min(local_min, select(type_max, data, valid_indices)); #endif /* NON_MULTIPLE_OF_16 */ // Perform min/max reduction local_min.s01234567 = min(local_min.s01234567, local_min.s89ABCDEF); local_max.s01234567 = max(local_max.s01234567, local_max.s89ABCDEF); local_min.s0123 = min(local_min.s0123, local_min.s4567); local_max.s0123 = max(local_max.s0123, local_max.s4567); local_min.s01 = min(local_min.s01, local_min.s23); local_max.s01 = max(local_max.s01, local_max.s23); local_min.s0 = min(local_min.s0, local_min.s1); local_max.s0 = max(local_max.s0, local_max.s1); // Update global min/max #ifdef IS_DATA_TYPE_FLOAT atomic_min(&min_max[0], FloatFlip(local_min.s0)); atomic_max(&min_max[1], FloatFlip(local_max.s0)); #else /* IS_DATA_TYPE_FLOAT */ atomic_min(&min_max[0], local_min.s0); atomic_max(&min_max[1], local_max.s0); #endif /* IS_DATA_TYPE_FLOAT */ } /** This function counts the min and max occurrences in an image and tags their position. * * @note -DCOUNT_MIN_MAX should be specified if we want to count the occurrences of the minimum and maximum values. * @note -DLOCATE_MIN and/or -DLOCATE_MAX should be specified if we want to store the position of each occurrence on the given array. * * @param[in] src_ptr Pointer to the source image. Supported data types: U8 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] min_max Pointer to buffer with minimum value in position 0 and maximum value in position 1 * @param[out] min_max_count Pointer to buffer with minimum value occurrences in position 0 and maximum value occurrences in position 1 * @param[out] min_loc Array that holds the location of the minimum value occurrences * @param[in] max_min_loc_count The maximum number of min value occurrences coordinates the array can hold * @param[out] max_loc Array that holds the location of the maximum value occurrences * @param[in] max_max_loc_count The maximum number of max value occurrences coordinates the array can hold */ __kernel void minmaxloc( IMAGE_DECLARATION(src), __global int *min_max, __global uint *min_max_count #ifdef LOCATE_MIN , __global Coordinates2D *min_loc, uint max_min_loc_count #endif /* LOCATE_MIN */ #ifdef LOCATE_MAX , __global Coordinates2D *max_loc, uint max_max_loc_count #endif /* LOCATE_MAX */ ) { Image src = CONVERT_TO_IMAGE_STRUCT(src); #ifdef IS_DATA_TYPE_FLOAT __global float *min_max_ptr = (__global float *)min_max; float min_value = min_max_ptr[0]; float max_value = min_max_ptr[1]; #else /* IS_DATA_TYPE_FLOAT */ int min_value = min_max[0]; int max_value = min_max[1]; #endif /* IS_DATA_TYPE_FLOAT */ DATA_TYPE value = *((__global DATA_TYPE *)src.ptr); #ifdef COUNT_MIN_MAX if(value == min_value) { uint idx = atomic_inc(&min_max_count[0]); #ifdef LOCATE_MIN if(idx < max_min_loc_count) { min_loc[idx].x = get_global_id(0); min_loc[idx].y = get_global_id(1); } #endif /* LOCATE_MIN */ } if(value == max_value) { uint idx = atomic_inc(&min_max_count[1]); #ifdef LOCATE_MAX if(idx < max_max_loc_count) { max_loc[idx].x = get_global_id(0); max_loc[idx].y = get_global_id(1); } #endif /* LOCATE_MAX */ } #endif /* COUNT_MIN_MAX */ }