/* * Copyright (c) 2019 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(EPSILON) && defined(WIDTH) /** This function normalizes the input 2D tensor across the first dimension with respect to mean and standard deviation of the same dimension. * * @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * @attention Data type should be passed using the -DDATA_TYPE compile flag, e.g. -DDATA_TYPE=float * @attention Width of the input tensor should be passed using the -DWIDTH compile flag, e.g. -DWIDTH=16 * @attention Normalization epsilon parameter should be given as a preprocessor argument with -DEPSILON=value. e.g. -DEPSILON=0.001f * * @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16/F32 * @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor * @param[out] output_ptr (Optional) Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x (Optional) Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y (Optional) Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination tensor */ __kernel void mean_stddev_normalization( IMAGE_DECLARATION(input) #ifndef IN_PLACE , IMAGE_DECLARATION(output) #endif /* IN_PLACE */ ) { // Get pixels pointer Image in = CONVERT_TO_IMAGE_STRUCT(input); #ifdef IN_PLACE Image out = in; #else /* IN_PLACE */ Image out = CONVERT_TO_IMAGE_STRUCT(output); #endif /* IN_PLACE */ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) sum = 0.f; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) sum_sq = 0.f; // Calculate partial sum int i = 0; for(; i <= (WIDTH - VEC_SIZE); i += VEC_SIZE) { // Load data VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)offset(&in, i, 0)); sum += data; sum_sq += data * data; } // Perform reduction #if VEC_SIZE > 8 sum.s01234567 += sum.s89abcdef; sum_sq.s01234567 += sum_sq.s89abcdef; #endif // VEC_SIZE > 8 #if VEC_SIZE > 4 sum.s0123 += sum.s4567; sum_sq.s0123 += sum_sq.s4567; #endif // VEC_SIZE > 4 #if VEC_SIZE > 2 sum.s01 += sum.s23; sum_sq.s01 += sum_sq.s23; #endif // VEC_SIZE > 2 sum.s0 += sum.s1; sum_sq.s0 += sum_sq.s1; // Left-overs loop for(; i < WIDTH; ++i) { DATA_TYPE data = *((__global DATA_TYPE *)offset(&in, i, 0)); sum.s0 += data; sum_sq.s0 += data * data; } DATA_TYPE mean = sum.s0 / WIDTH; DATA_TYPE var = (sum_sq.s0 / WIDTH) - (mean * mean); DATA_TYPE stddev_inv = 1.f / sqrt(var + EPSILON); i = 0; for(; i <= (WIDTH - VEC_SIZE); i += VEC_SIZE) { VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)offset(&in, i, 0)); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) res = (data - mean) * stddev_inv; VSTORE(VEC_SIZE) (res, 0, (__global DATA_TYPE *)offset(&out, i, 0)); } for(; i < WIDTH; ++i) { DATA_TYPE data = *((__global DATA_TYPE *)offset(&in, i, 0)); *((__global DATA_TYPE *)offset(&out, i, 0)) = (data - mean) * stddev_inv; } } #endif /* defined(VEC_SIZE) && defined(DATA_TYPE) && defined(EPSILON) && defined(WIDTH) */