/* * Copyright (c) 2016, 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" /** Calculates L1 normalization between two inputs. * * @param[in] a First input. Supported data types: S16, S32 * @param[in] b Second input. Supported data types: S16, S32 * * @return L1 normalization magnitude result. Supported data types: S16, S32 */ inline VEC_DATA_TYPE(DATA_TYPE, 16) magnitude_l1(VEC_DATA_TYPE(DATA_TYPE, 16) a, VEC_DATA_TYPE(DATA_TYPE, 16) b) { return CONVERT_SAT(add_sat(abs(a), abs(b)), VEC_DATA_TYPE(DATA_TYPE, 16)); } /** Calculates L2 normalization between two inputs. * * @param[in] a First input. Supported data types: S16, S32 * @param[in] b Second input. Supported data types: S16, S32 * * @return L2 normalization magnitude result. Supported data types: S16, S32 */ inline VEC_DATA_TYPE(DATA_TYPE, 16) magnitude_l2(int16 a, int16 b) { return CONVERT_SAT((sqrt(convert_float16((convert_uint16(a * a) + convert_uint16(b * b)))) + 0.5f), VEC_DATA_TYPE(DATA_TYPE, 16)); } /** Calculates unsigned phase between two inputs. * * @param[in] a First input. Supported data types: S16, S32 * @param[in] b Second input. Supported data types: S16, S32 * * @return Unsigned phase mapped in the interval [0, 180]. Supported data types: U8 */ inline uchar16 phase_unsigned(VEC_DATA_TYPE(DATA_TYPE, 16) a, VEC_DATA_TYPE(DATA_TYPE, 16) b) { float16 angle_deg_f32 = atan2pi(convert_float16(b), convert_float16(a)) * (float16)180.0f; angle_deg_f32 = select(angle_deg_f32, (float16)180.0f + angle_deg_f32, angle_deg_f32 < (float16)0.0f); return convert_uchar16(angle_deg_f32); } /** Calculates signed phase between two inputs. * * @param[in] a First input. Supported data types: S16, S32 * @param[in] b Second input. Supported data types: S16, S32 * * @return Signed phase mapped in the interval [0, 256). Supported data types: U8 */ inline uchar16 phase_signed(VEC_DATA_TYPE(DATA_TYPE, 16) a, VEC_DATA_TYPE(DATA_TYPE, 16) b) { float16 arct = atan2pi(convert_float16(b), convert_float16(a)); arct = select(arct, arct + 2, arct < 0.0f); return convert_uchar16(convert_int16(mad(arct, 128, 0.5f)) & (int16)0xFFu); } #if(1 == MAGNITUDE) #define MAGNITUDE_OP(x, y) magnitude_l1((x), (y)) #elif(2 == MAGNITUDE) #define MAGNITUDE_OP(x, y) magnitude_l2(convert_int16(x), convert_int16(y)) #else /* MAGNITUDE */ #define MAGNITUDE_OP(x, y) #endif /* MAGNITUDE */ #if(1 == PHASE) #define PHASE_OP(x, y) phase_unsigned((x), (y)) #elif(2 == PHASE) #define PHASE_OP(x, y) phase_signed((x), (y)) #else /* PHASE */ #define PHASE_OP(x, y) #endif /* PHASE */ /** Calculate the magnitude and phase of given the gradients of an image. * * @note Magnitude calculation supported: L1 normalization(type = 1) and L2 normalization(type = 2). * @note Phase calculation supported: Unsigned(type = 1) [0,128] and Signed(type = 2) [0,256). * * @attention To enable phase calculation -DPHASE="phase_calculation_type_id" must be provided at compile time. eg -DPHASE=1 * @attention To enable magnitude calculation -DMAGNITUDE="magnitude_calculation_type_id" must be provided at compile time. eg -DMAGNITUDE=1 * @attention Datatype of the two inputs is passed at compile time using -DDATA_TYPE. e.g -DDATA_TYPE=short. Supported data_types are: short and int * * @param[in] gx_ptr Pointer to the first source image (gradient X). Supported data types: S16, S32 * @param[in] gx_stride_x Stride of the source image in X dimension (in bytes) * @param[in] gx_step_x gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] gx_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] gx_step_y gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] gx_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] gy_ptr Pointer to the second source image (gradient Y) . Supported data types: S16, S32 * @param[in] gy_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] gy_step_x gy_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] gy_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] gy_step_y gy_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] gy_offset_first_element_in_bytes The offset of the first element in the destination image * @param[out] magnitude_ptr Pointer to the magnitude destination image. Supported data types: S16, S32 * @param[in] magnitude_stride_x Stride of the source image in X dimension (in bytes) * @param[in] magnitude_step_x magnitude_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] magnitude_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] magnitude_step_y magnitude_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] magnitude_offset_first_element_in_bytes The offset of the first element in the source image * @param[out] phase_ptr Pointer to the phase destination image. Supported data types: U8 * @param[in] phase_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] phase_step_x phase_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] phase_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] phase_step_y phase_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] phase_offset_first_element_in_bytes The offset of the first element in the destination image * */ __kernel void magnitude_phase( IMAGE_DECLARATION(gx), IMAGE_DECLARATION(gy) #ifdef MAGNITUDE , IMAGE_DECLARATION(magnitude) #endif /* MAGNITUDE */ #ifdef PHASE , IMAGE_DECLARATION(phase) #endif /* PHASE */ ) { // Get pixels pointer Image gx = CONVERT_TO_IMAGE_STRUCT(gx); Image gy = CONVERT_TO_IMAGE_STRUCT(gy); // Load values VEC_DATA_TYPE(DATA_TYPE, 16) in_a = vload16(0, (__global DATA_TYPE *)gx.ptr); VEC_DATA_TYPE(DATA_TYPE, 16) in_b = vload16(0, (__global DATA_TYPE *)gy.ptr); // Calculate and store the results #ifdef MAGNITUDE Image magnitude = CONVERT_TO_IMAGE_STRUCT(magnitude); vstore16(MAGNITUDE_OP(in_a, in_b), 0, (__global DATA_TYPE *)magnitude.ptr); #endif /* MAGNITUDE */ #ifdef PHASE Image phase = CONVERT_TO_IMAGE_STRUCT(phase); vstore16(PHASE_OP(in_a, in_b), 0, phase.ptr); #endif /* PHASE */ }