/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_HELPERS_ASYMM_H #define ARM_COMPUTE_HELPERS_ASYMM_H #include "helpers.h" #define CONVERT_DOWN_RTE_STR(x, type) (convert_##type##_rte((x))) #define CONVERT_DOWN_RTE(x, type) CONVERT_DOWN_RTE_STR(x, type) /** Quantize a floating-point scalar value to 8-bit asymmetric * * @param[in] input Input value to quantize * @param[in] offset Quantization offset * @param[in] scale Quantization scale * * @return quantized value */ inline uchar quantize_qasymm8(float input, float offset, float scale) { float out_f32 = input / scale + offset; uchar res_u8 = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, int), uchar); return res_u8; } /** Dequantize a scalar value from 8-bit asymmetric to floating-point * * @param[in] input Input value to quantize * @param[in] offset Quantization offset * @param[in] scale Quantization scale * * @return quantized value */ inline float dequantize_qasymm8(uchar input, float offset, float scale) { return ((float)input - offset) * scale; } /** Quantize a vector of values from floating-point * * @param[in] type Output data type. * @param[in] size Size of vector. * * @return quantized values */ #define QUANTIZE_IMPL(type, size) \ inline VEC_DATA_TYPE(type, size) quantize_##type##size(VEC_DATA_TYPE(float, size) input, float offset, float scale) \ { \ VEC_DATA_TYPE(float, size) \ out_f32 = input / (VEC_DATA_TYPE(float, size))(scale) + (VEC_DATA_TYPE(float, size))(offset); \ VEC_DATA_TYPE(type, size) \ res = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, VEC_DATA_TYPE(int, size)), VEC_DATA_TYPE(type, size)); \ return res; \ } /** Dequantize a vector of values to floating-point * * @param[in] type Input data type. * @param[in] size Size of vector. * * @return dequantized values in floating point */ #define DEQUANTIZE_IMPL(type, size) \ inline VEC_DATA_TYPE(float, size) dequantize_##type##size(VEC_DATA_TYPE(type, size) input, float offset, float scale) \ { \ return (CONVERT(input, VEC_DATA_TYPE(float, 4)) - offset) * scale; \ } /** Correctly-rounded-to-nearest division by a power-of-two. * * @param[in] size Size of vector. * * @return Correctly-rounded-to-nearest division by a power-of-two. */ #define ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_rounding_divide_by_POW2_##size(VEC_DATA_TYPE(int, size) x, int exponent) \ { \ VEC_DATA_TYPE(int, size) \ mask = (1 << exponent) - 1; \ const VEC_DATA_TYPE(int, size) zero = 0; \ const VEC_DATA_TYPE(int, size) one = 1; \ VEC_DATA_TYPE(int, size) \ threshold = (mask >> 1) + select(zero, one, x < 0); \ return (x >> exponent) + select(zero, one, (x & mask) > threshold); \ } /** Product of two numbers, interpreting them as fixed-point values in the interval [-1, 1), * rounding to the nearest value, and saturating -1 * -1 to the maximum value. * * @param[in] size Size of vector. * * @return Product of two fixed-point numbers. */ #define ASYMM_MULT_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_mult##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \ { \ VEC_DATA_TYPE(int, size) \ overflow = a == b && a == INT_MIN; \ VEC_DATA_TYPE(long, size) \ a_64 = convert_long##size(a); \ VEC_DATA_TYPE(long, size) \ b_64 = convert_long##size(b); \ VEC_DATA_TYPE(long, size) \ ab_64 = a_64 * b_64; \ /* COMPMID-907 */ \ VEC_DATA_TYPE(int, size) \ ab_x2_high32 = convert_int##size(((ab_64 + (1 << 30)) >> 31)); \ return select(ab_x2_high32, INT_MAX, overflow); \ } /** Calculates \f$ exp(x) \f$ for x in [-1/4, 0). * * @param[in] size Size of vector. * * @return Result in fixed-point format Q0. */ #define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(VEC_DATA_TYPE(int, size) a) \ { \ const VEC_DATA_TYPE(int, size) constant_term = 1895147668; \ const VEC_DATA_TYPE(int, size) constant_1_over_3 = 715827883; \ const int k_fractional_bits = 31; \ VEC_DATA_TYPE(int, size) \ x = a + (1 << (k_fractional_bits - 3)); \ VEC_DATA_TYPE(int, size) \ x2 = ASYMM_MULT(x, x, size); \ VEC_DATA_TYPE(int, size) \ x3 = ASYMM_MULT(x2, x, size); \ VEC_DATA_TYPE(int, size) \ x4 = ASYMM_MULT(x2, x2, size); \ VEC_DATA_TYPE(int, size) \ x4_over_4 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4, 2, size); \ VEC_DATA_TYPE(int, size) \ x4_over_24_plus_x3_over_6_plus_x2 = ASYMM_MULT((x4_over_4 + x3), constant_1_over_3, size) + x2; \ VEC_DATA_TYPE(int, size) \ x4_over_24_plus_x3_over_6_plus_x2_over_2 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4_over_24_plus_x3_over_6_plus_x2, 1, size); \ return constant_term + ASYMM_MULT(constant_term, x + x4_over_24_plus_x3_over_6_plus_x2_over_2, size); \ } /** Each bit of the result is set to the corresponding bit of either then_val or * else_val depending on whether the corresponding bit of if_mask is set. * Equivalent to the VBSL instruction in ARM NEON. * * @param[in] size Size of vector. * * @returns Result contaning bits from @p then_val or from @p else_val depending on corresponding bit in @p if_mask is set or not. */ #define ASYMM_SELECT_USING_MASK_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_select_using_mask##size(VEC_DATA_TYPE(int, size) if_mask, VEC_DATA_TYPE(int, size) then_val, VEC_DATA_TYPE(int, size) else_val) \ { \ return (if_mask & then_val) ^ (~if_mask & else_val); \ } /** For each element of input vector, the corresponding bits of the result item are set * if the input item is zero. * * @param[in] size Size of vector. * * @returns Output vector with bits set when corresponding bit in @p a is zero. */ #define ASYMM_MASK_IF_ZERO_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_mask_if_zero##size(VEC_DATA_TYPE(int, size) a) \ { \ const VEC_DATA_TYPE(int, size) all_zeros = 0; \ const VEC_DATA_TYPE(int, size) all_ones = ~0; \ return select(all_zeros, all_ones, a == 0); \ } /** For each element of input vector, the corresponding bits of the result item are set * if the input item is non-zero. * * @param[in] size Size of vector. * * @returns Output vector with bits set when corresponding bit in @p a is non zero. */ #define ASYMM_MASK_IF_NON_ZERO_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_mask_if_non_zero##size(VEC_DATA_TYPE(int, size) a) \ { \ const VEC_DATA_TYPE(int, size) all_zeros = 0; \ const VEC_DATA_TYPE(int, size) all_ones = ~0; \ return select(all_zeros, all_ones, a != 0); \ } #define EXP_BARREL_SHIFTER_IMPL(size) \ inline VEC_DATA_TYPE(int, size) exp_barrel_shifter##size(VEC_DATA_TYPE(int, size) result, int exponent, int fp_multiplier, int k_integer_bits, int k_fractional_bits, VEC_DATA_TYPE(int, size) remainder) \ { \ if(k_integer_bits > exponent) \ { \ const int k_shift_amount = k_integer_bits > exponent ? k_fractional_bits + exponent : 0; \ return ASYMM_SELECT_USING_MASK( \ ASYMM_MASK_IF_NON_ZERO(remainder & (1 << k_shift_amount), size), \ ASYMM_MULT(result, fp_multiplier, size), result, size); \ } \ \ return result; \ } /** Calculates \f$ exp(x) \f$ for x < 0. * * @param[in] size Size of vector. * * @return Result in fixed-point format Q0. */ #define ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_exp_on_negative_values##size(VEC_DATA_TYPE(int, size) a, int k_integer_bits) \ { \ const int k_fractional_bits = 31 - k_integer_bits; \ VEC_DATA_TYPE(int, size) \ k_one_quarter = 1 << (k_fractional_bits - 2); \ VEC_DATA_TYPE(int, size) \ mask = k_one_quarter - 1; \ VEC_DATA_TYPE(int, size) \ a_mod_quarter_minus_one_quarter = (a & mask) - k_one_quarter; \ VEC_DATA_TYPE(int, size) \ a_mod_quarter_minus_one_quarter_scaled = a_mod_quarter_minus_one_quarter << k_integer_bits; \ VEC_DATA_TYPE(int, size) \ result = ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a_mod_quarter_minus_one_quarter_scaled, size); \ VEC_DATA_TYPE(int, size) \ remainder = a_mod_quarter_minus_one_quarter - a; \ \ result = EXP_BARREL_SHIFTER(result, -2, 1672461947, k_integer_bits, k_fractional_bits, remainder, size); \ result = EXP_BARREL_SHIFTER(result, -1, 1302514674, k_integer_bits, k_fractional_bits, remainder, size); \ result = EXP_BARREL_SHIFTER(result, +0, 790015084, k_integer_bits, k_fractional_bits, remainder, size); \ result = EXP_BARREL_SHIFTER(result, +1, 290630308, k_integer_bits, k_fractional_bits, remainder, size); \ result = EXP_BARREL_SHIFTER(result, +2, 39332535, k_integer_bits, k_fractional_bits, remainder, size); \ result = EXP_BARREL_SHIFTER(result, +3, 720401, k_integer_bits, k_fractional_bits, remainder, size); \ result = EXP_BARREL_SHIFTER(result, +4, 242, k_integer_bits, k_fractional_bits, remainder, size); \ \ if(k_integer_bits > 5) \ { \ const VEC_DATA_TYPE(int, size) clamp = -(1 << (k_fractional_bits + 5)); \ result = ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_NON_ZERO(a < clamp, size), 0, result, size); \ } \ \ const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX; \ return ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_ZERO(a, size), Q0_one, result, size); \ } /** Calculates the product of a integer value by a power of two, with either a positive exponent * (equivalent to an arithmetic left shift, saturating) or a negative exponent * (equivalent to an arithmetic right shift, rounding to nearest). * * @param[in] size Size of vector. * * @return Arithmetic left or right shift. */ #define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_saturating_rounding_mult_by_pow2##size(VEC_DATA_TYPE(int, size) x, int exponent) \ { \ if(exponent < 0) \ { \ return ASYMM_ROUNDING_DIVIDE_BY_POW2(x, -exponent, size); \ } \ \ const VEC_DATA_TYPE(int, size) min = INT_MIN; \ const VEC_DATA_TYPE(int, size) max = INT_MAX; \ int threshold = ((1 << (31 - exponent)) - 1); \ VEC_DATA_TYPE(int, size) \ positive_mask = ASYMM_MASK_IF_NON_ZERO(x > threshold, size); \ VEC_DATA_TYPE(int, size) \ negative_mask = ASYMM_MASK_IF_NON_ZERO(x < -threshold, size); \ VEC_DATA_TYPE(int, size) \ result = x << exponent; \ result = ASYMM_SELECT_USING_MASK(positive_mask, max, result, size); \ result = ASYMM_SELECT_USING_MASK(negative_mask, min, result, size); \ return result; \ } /** Calculates (a+b)/2, rounded to the nearest integer. * Equivalent to VRHADD in the ARM NEON instruction set. * * @param[in] size Size of vector. * * @return (a+b)/2, rounded to the nearest integer. */ #define ASYMM_ROUNDING_HALF_SUM_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_rounding_half_sum##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \ { \ VEC_DATA_TYPE(long, size) \ a64 = convert_long##size(a); \ VEC_DATA_TYPE(long, size) \ b64 = convert_long##size(b); \ VEC_DATA_TYPE(long, size) \ sum = a64 + b64; \ const VEC_DATA_TYPE(long, size) one = 1; \ const VEC_DATA_TYPE(long, size) minus_one = -1; \ VEC_DATA_TYPE(long, size) \ sign = select(minus_one, one, sum >= 0); \ return convert_int##size((sum + sign) / 2); \ } /** Calculates \f$ 1 / (1 + x) \f$ for x in (0, 1). * * @param[in] size Size of vector. * * @return Result in fixed-point format Q0. */ #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(VEC_DATA_TYPE(int, size) a) \ { \ const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX; \ const VEC_DATA_TYPE(int, size) Q2_one = 1 << (31 - 2); \ VEC_DATA_TYPE(int, size) \ half_denominator = ASYMM_ROUNDING_HALF_SUM(a, Q0_one, size); \ const VEC_DATA_TYPE(int, size) Q2_48_over_17 = 1515870810; \ const VEC_DATA_TYPE(int, size) Q2_neg_32_over_17 = -1010580540; \ VEC_DATA_TYPE(int, size) \ x = Q2_48_over_17 + ASYMM_MULT(half_denominator, Q2_neg_32_over_17, size); \ for(int i = 0; i < 3; i++) \ { \ VEC_DATA_TYPE(int, size) \ half_denominator_times_x = ASYMM_MULT(half_denominator, x, size); \ VEC_DATA_TYPE(int, size) \ one_minus_half_denominator_times_x = Q2_one - half_denominator_times_x; \ VEC_DATA_TYPE(int, size) \ tmp = ASYMM_MULT(x, one_minus_half_denominator_times_x, size); \ x = x + ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(tmp, 2, size); \ } \ return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, 1, size); \ } /** Considering the integer value as fixed-point, change the number of integer bits and update value accordingly. * * @param[in] size Size of vector. * * @return Rescaled value. */ #define ASYMM_RESCALE_IMPL(size) \ inline VEC_DATA_TYPE(int, size) asymm_rescale##size(VEC_DATA_TYPE(int, size) value, int src_integer_bits, int dst_integer_bits) \ { \ int exponent = src_integer_bits - dst_integer_bits; \ return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(value, exponent, size); \ } #define QUANTIZE_STR(input, offset, scale, type, size) quantize_##type##size(input, offset, scale) #define QUANTIZE(input, offset, scale, type, size) QUANTIZE_STR(input, offset, scale, type, size) #define DEQUANTIZE_STR(input, offset, scale, type, size) dequantize_##type##size(input, offset, scale) #define DEQUANTIZE(input, offset, scale, type, size) DEQUANTIZE_STR(input, offset, scale, type, size) #define ASYMM_ROUNDING_DIVIDE_BY_POW2(x, exponent, size) asymm_rounding_divide_by_POW2_##size(x, exponent) #define ASYMM_MULT(a, b, size) asymm_mult##size(a, b) #define ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, quantized_multiplier, right_shift, size) \ ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(x, quantized_multiplier, size), right_shift, size) #define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(a) #define ASYMM_SELECT_USING_MASK(if_mask, then_val, else_val, size) asymm_select_using_mask##size(if_mask, then_val, else_val) #define ASYMM_MASK_IF_ZERO(a, size) asymm_mask_if_zero##size(a) #define ASYMM_MASK_IF_NON_ZERO(a, size) asymm_mask_if_non_zero##size(a) #define EXP_BARREL_SHIFTER(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder, size) exp_barrel_shifter##size(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder) #define ASYMM_EXP_ON_NEGATIVE_VALUES(a, k_integer_bits, size) asymm_exp_on_negative_values##size(a, k_integer_bits) #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1(a, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(a) #define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, exponent, size) asymm_saturating_rounding_mult_by_pow2##size(x, exponent) #define ASYMM_ROUNDING_HALF_SUM(a, b, size) asymm_rounding_half_sum##size(a, b) #define ASYMM_RESCALE(value, src_integer_bits, dst_integer_bits, size) asymm_rescale##size(value, src_integer_bits, dst_integer_bits) QUANTIZE_IMPL(uchar, 4) QUANTIZE_IMPL(ushort, 4) DEQUANTIZE_IMPL(uchar, 4) DEQUANTIZE_IMPL(ushort, 4) ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(2) ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(4) ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(8) ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(16) ASYMM_MULT_IMPL(2) ASYMM_MULT_IMPL(4) ASYMM_MULT_IMPL(8) ASYMM_MULT_IMPL(16) ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(2) ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(4) ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(8) ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(16) ASYMM_SELECT_USING_MASK_IMPL(2) ASYMM_SELECT_USING_MASK_IMPL(4) ASYMM_SELECT_USING_MASK_IMPL(8) ASYMM_SELECT_USING_MASK_IMPL(16) ASYMM_MASK_IF_ZERO_IMPL(2) ASYMM_MASK_IF_ZERO_IMPL(4) ASYMM_MASK_IF_ZERO_IMPL(8) ASYMM_MASK_IF_ZERO_IMPL(16) ASYMM_MASK_IF_NON_ZERO_IMPL(2) ASYMM_MASK_IF_NON_ZERO_IMPL(4) ASYMM_MASK_IF_NON_ZERO_IMPL(8) ASYMM_MASK_IF_NON_ZERO_IMPL(16) EXP_BARREL_SHIFTER_IMPL(2) EXP_BARREL_SHIFTER_IMPL(4) EXP_BARREL_SHIFTER_IMPL(8) EXP_BARREL_SHIFTER_IMPL(16) ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(2) ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(4) ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(8) ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(16) ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(2) ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(4) ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(8) ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(16) ASYMM_ROUNDING_HALF_SUM_IMPL(2) ASYMM_ROUNDING_HALF_SUM_IMPL(4) ASYMM_ROUNDING_HALF_SUM_IMPL(8) ASYMM_ROUNDING_HALF_SUM_IMPL(16) ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(2) ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(4) ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(8) ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(16) ASYMM_RESCALE_IMPL(2) ASYMM_RESCALE_IMPL(4) ASYMM_RESCALE_IMPL(8) ASYMM_RESCALE_IMPL(16) #endif // ARM_COMPUTE_HELPERS_ASYMM_H