/* * Copyright (c) 2016-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_HELPER_H #define ARM_COMPUTE_HELPER_H #if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16) #pragma OPENCL EXTENSION cl_khr_fp16 : enable #endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16) #if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8) #pragma OPENCL EXTENSION cl_arm_integer_dot_product_int8 : enable #endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8) #if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8) #pragma OPENCL EXTENSION cl_arm_integer_dot_product_accumulate_int8 : enable #endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8) #if defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf) #pragma OPENCL EXTENSION cl_arm_printf : enable #endif // defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf) #define GPU_ARCH_MIDGARD 0x100 #define GPU_ARCH_BIFROST 0x200 /** Concatenate two inputs. * * @param[in] a The first input to be concatenated * @param[in] b The second input to be concatenated * * @return The concatenated output */ #define CONCAT(a, b) a##b /** Expand the given vector * * @param[in] x The vector to be expanded * * @return The expanded output */ #define EXPAND(x) x /** Clamp the given value between an upper and lower bound. * * @param[in] x The value to be clamped * @param[in] min_val The lower bound * @param[in] max_val The upper bound * * @return The clamped value. */ #define CLAMP(x, min_val, max_val) min(max(x, min_val), max_val) /** REVn reverses the given vector whose size is n. * @name REVn * * @param[in] x The vector to be reversed * * @return The reversed vector * @{ */ #define REV1(x) ((x)) #define REV2(x) ((x).s10) #define REV3(x) ((x).s210) #define REV4(x) ((x).s3210) #define REV8(x) ((x).s76543210) #define REV16(x) ((x).sFEDCBA9876543210) /** @} */ // end of group REVn /** Reverse the given vector. * @name REVERSE * * @param[in] x The vector to be reversed * @param[in] s The size of the vector * * @return The reversed vector * @{ */ #define REVERSE_STR(x, s) REV##s((x)) #define REVERSE(x, s) REVERSE_STR(x, s) /** @} */ // end of group REVERSE /** Circular-right-shift (rotate-right) the vector of size s by the amount of n. * @name ROTs_n * * @param[in] x The vector to be shifted * * @return The shifted vector * @{ */ #define ROT1_0(x) ((x)) #define ROT2_0(x) ((x)) #define ROT2_1(x) ((x).s10) #define ROT3_0(x) ((x)) #define ROT3_1(x) ((x).s201) #define ROT3_2(x) ((x).s120) #define ROT4_0(x) ((x)) #define ROT4_1(x) ((x).s3012) #define ROT4_2(x) ((x).s2301) #define ROT4_3(x) ((x).s1230) #define ROT8_0(x) ((x)) #define ROT8_1(x) ((x).s70123456) #define ROT8_2(x) ((x).s67012345) #define ROT8_3(x) ((x).s56701234) #define ROT8_4(x) ((x).s45670123) #define ROT8_5(x) ((x).s34567012) #define ROT8_6(x) ((x).s23456701) #define ROT8_7(x) ((x).s12345670) #define ROT16_0(x) ((x)) #define ROT16_1(x) ((x).sF0123456789ABCDE) #define ROT16_2(x) ((x).sEF0123456789ABCD) #define ROT16_3(x) ((x).sDEF0123456789ABC) #define ROT16_4(x) ((x).sCDEF0123456789AB) #define ROT16_5(x) ((x).sBCDEF0123456789A) #define ROT16_6(x) ((x).sABCDEF0123456789) #define ROT16_7(x) ((x).s9ABCDEF012345678) #define ROT16_8(x) ((x).s89ABCDEF01234567) #define ROT16_9(x) ((x).s789ABCDEF0123456) #define ROT16_10(x) ((x).s6789ABCDEF012345) #define ROT16_11(x) ((x).s56789ABCDEF01234) #define ROT16_12(x) ((x).s456789ABCDEF0123) #define ROT16_13(x) ((x).s3456789ABCDEF012) #define ROT16_14(x) ((x).s23456789ABCDEF01) #define ROT16_15(x) ((x).s123456789ABCDEF0) /** @} */ // end of group ROTs_n /** Circular-right-shift (rotate-right) the given vector by the given amount. * @name ROTATE * * @param[in] x The vector to be shifted * @param[in] s The size of the vector * @param[in] n The amount to be shifted * * @return The shifted vector * @{ */ #define ROTATE_STR(x, s, n) ROT##s##_##n(x) #define ROTATE(x, s, n) ROTATE_STR(x, s, n) /** @} */ // end of group ROTATE /** Creates a vector of size n filled with offset values corresponding to the location of each element. * @name V_OFFSn * * @param[in] dt The data type of the output vector * * @return The vector filled with offset values * @{ */ #define V_OFFS1(dt) (dt)(0) #define V_OFFS2(dt) (dt)(0, 1) #define V_OFFS3(dt) (dt)(0, 1, 3) #define V_OFFS4(dt) (dt)(0, 1, 2, 3) #define V_OFFS8(dt) (dt)(0, 1, 2, 3, 4, 5, 6, 7) #define V_OFFS16(dt) (dt)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) /** @} */ // end of group V_OFFSn /** Create a vector filled with offset values corresponding to the location of each element. * @name VEC_OFFS * * @param[in] dt The data type of the output vector * @param[in] s The size of the output vector * * @return The vector filled with offset values * @{ */ #define VEC_OFFS_STR(dt, s) V_OFFS##s(dt) #define VEC_OFFS(dt, s) VEC_OFFS_STR(dt, s) /** @} */ // end of group VEC_OFFS #define VLOAD_STR(size) vload##size #define VLOAD(size) VLOAD_STR(size) #define PIXEL_UNIT4 1 #define PIXEL_UNIT8 2 #define PIXEL_UNIT16 4 /** Utility macro to convert a vector size in pixel unit. * * @name CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT * * @param[in] vec_size Vector size. Only 4,8 and 16 is supported * * @return The pixel unit (number of pixels) * @{ */ #define CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT_STR(vec_size) PIXEL_UNIT##vec_size #define CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(vec_size) CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT_STR(vec_size) /** @} */ // end of group CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT #define read_image2d_floatx1(img, x_coord, y_coord) (float4)(read_imagef(img, (int2)(x_coord, y_coord))); #define read_image2d_floatx2(img, x_coord, y_coord) (float8)(read_imagef(img, (int2)(x_coord, y_coord)), read_imagef(img, (int2)(x_coord + 1, y_coord))); #define read_image2d_floatx4(img, x_coord, y_coord) (float16)(read_imagef(img, (int2)(x_coord, y_coord)), read_imagef(img, (int2)(x_coord + 1, y_coord)), read_imagef(img, (int2)(x_coord + 2, y_coord)), read_imagef(img, (int2)(x_coord + 3, y_coord))); #if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16) #define read_image2d_halfx1(img, x_coord, y_coord) (half4)(read_imageh(img, (int2)(x_coord, y_coord))); #define read_image2d_halfx2(img, x_coord, y_coord) (half8)(read_imageh(img, (int2)(x_coord, y_coord)), read_imageh(img, (int2)(x_coord + 1, y_coord))); #define read_image2d_halfx4(img, x_coord, y_coord) (half16)(read_imageh(img, (int2)(x_coord, y_coord)), read_imageh(img, (int2)(x_coord + 1, y_coord)), read_imageh(img, (int2)(x_coord + 2, y_coord)), read_imageh(img, (int2)(x_coord + 3, y_coord))); #endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16) /** Utility macro to read a 2D OpenCL image object. * * @note Coordinates are not normalized * * @param[in] data_type Data type * @param[in] n0 Number of pixel to read. Only 1,2 and 4 is supported * @param[in] img OpenCL image object * @param[in] x_coord The x coordinate for the top-left pixel * @param[in] y_coord The y coordinate for the top-left pixel * * @return Pixels from the 2D OpenCL image object * @{ */ #define READ_IMAGE2D_STR(data_type, n0, img, x_coord, y_coord) read_image2d_##data_type##x##n0(img, x_coord, y_coord) #define READ_IMAGE2D(data_type, n0, img, x_coord, y_coord) READ_IMAGE2D_STR(data_type, n0, img, x_coord, y_coord) #define VSTORE_STR(size) vstore##size #define VSTORE(size) VSTORE_STR(size) #define float1 float #define half1 half #define char1 char #define uchar1 uchar #define short1 short #define ushort1 ushort #define int1 int #define uint1 uint #define long1 long #define ulong1 ulong #define double1 double #define vload1(OFFSET, PTR) *(OFFSET + PTR) #define vstore1(DATA, OFFSET, PTR) *(OFFSET + PTR) = DATA /** Extended partial vstore that correctly handles scalar values as well. * Store the **lower** 0 to (n-1)th elements of the given vector while minimising the amount of vstore ops * @name VSTORE_PARTIAL * * @note With this macro, the passed data can be both a vector and a scalar * @note @p store_size needs to be <= @p size * eg 1: Valid * VSTORE_PARTIAL(16, 15) ...; * eg 2: Invalid * VSTORE_PARTIAL(4, 7) ...; * * @param[in] size The width of @p DATA. Supported values: 1(scalar), 2, 3, 4, 8, 16 * @param[in] store_size The number of lower elements to store. Supported values: 1-16, but has to be <= @p size * @{ */ #define VSTORE_PARTIAL_STR(size, store_size) vstore_partial_##size##_##store_size #define VSTORE_PARTIAL(size, store_size) VSTORE_PARTIAL_STR(size, store_size) // Size == 1 (scalar) #define vstore_partial_1_1 vstore1 // Size == 2 #define vstore_partial_2_1 vstore_partial_1 #define vstore_partial_2_2 vstore_partial_2 // Size == 3 #define vstore_partial_3_1 vstore_partial_1 #define vstore_partial_3_2 vstore_partial_2 #define vstore_partial_3_3 vstore_partial_3 // Size == 4 #define vstore_partial_4_1 vstore_partial_1 #define vstore_partial_4_2 vstore_partial_2 #define vstore_partial_4_3 vstore_partial_3 #define vstore_partial_4_4 vstore_partial_4 // Size == 8 #define vstore_partial_8_1 vstore_partial_1 #define vstore_partial_8_2 vstore_partial_2 #define vstore_partial_8_3 vstore_partial_3 #define vstore_partial_8_4 vstore_partial_4 #define vstore_partial_8_5 vstore_partial_5 #define vstore_partial_8_6 vstore_partial_6 #define vstore_partial_8_7 vstore_partial_7 #define vstore_partial_8_8 vstore_partial_8 // Size == 16 #define vstore_partial_16_1 vstore_partial_1 #define vstore_partial_16_2 vstore_partial_2 #define vstore_partial_16_3 vstore_partial_3 #define vstore_partial_16_4 vstore_partial_4 #define vstore_partial_16_5 vstore_partial_5 #define vstore_partial_16_6 vstore_partial_6 #define vstore_partial_16_7 vstore_partial_7 #define vstore_partial_16_8 vstore_partial_8 #define vstore_partial_16_9 vstore_partial_9 #define vstore_partial_16_10 vstore_partial_10 #define vstore_partial_16_11 vstore_partial_11 #define vstore_partial_16_12 vstore_partial_12 #define vstore_partial_16_13 vstore_partial_13 #define vstore_partial_16_14 vstore_partial_14 #define vstore_partial_16_15 vstore_partial_15 #define vstore_partial_16_16 vstore_partial_16 /** Partial vstore. Store the **lower** 0 to (n-1)th elements of the given vector while minimising the amount of vstore ops * @name vstore_partial_n * * @note @p DATA needs to be a vector not a scalar * @note n needs to be <= the vector width of the input variable @p DATA * eg 1: Valid * vstore_partial_15(var:float16, 0, 0xabcd); * eg 2: Invalid * vstore_partial_7(var:float4, 0, 0xabcd); * * @note in cases n == 1, 2, 3, 4, 8, 16, no extra vstore is invoked, thus there's no performance penalty. * * @param[in] DATA The name of the variable * @param[in] OFFSET Offset in n * @param[in] PTR The base pointer * @{ */ #define vstore_partial_1(DATA, OFFSET, PTR) \ vstore1(DATA.s0, OFFSET, PTR); #define vstore_partial_2(DATA, OFFSET, PTR) \ vstore2(DATA.s01, OFFSET, PTR); #define vstore_partial_3(DATA, OFFSET, PTR) \ vstore3(DATA.s012, OFFSET, PTR); #define vstore_partial_4(DATA, OFFSET, PTR) \ vstore4(DATA.s0123, OFFSET, PTR); #define vstore_partial_5(DATA, OFFSET, PTR) \ vstore_partial_4(DATA.s0123, OFFSET, PTR); \ vstore1(DATA.s4, OFFSET, PTR + 4); #define vstore_partial_6(DATA, OFFSET, PTR) \ vstore_partial_4(DATA.s0123, OFFSET, PTR); \ vstore_partial_2(DATA.s45, OFFSET, PTR + 4); #define vstore_partial_7(DATA, OFFSET, PTR) \ vstore_partial_4(DATA.s0123, OFFSET, PTR); \ vstore_partial_3(DATA.s456, OFFSET, PTR + 4); #define vstore_partial_8(DATA, OFFSET, PTR) \ vstore8(DATA.s01234567, OFFSET, PTR); #define vstore_partial_9(DATA, OFFSET, PTR) \ vstore_partial_8(DATA.s01234567, OFFSET, PTR); \ vstore1(DATA.s8, OFFSET, PTR + 8); #define vstore_partial_10(DATA, OFFSET, PTR) \ vstore_partial_8(DATA.s01234567, OFFSET, PTR); \ vstore_partial_2(DATA.s89, OFFSET, PTR + 8); #define vstore_partial_11(DATA, OFFSET, PTR) \ vstore_partial_8(DATA.s01234567, OFFSET, PTR); \ vstore_partial_3(DATA.s89a, OFFSET, PTR + 8); #define vstore_partial_12(DATA, OFFSET, PTR) \ vstore_partial_8(DATA.s01234567, OFFSET, PTR); \ vstore_partial_4(DATA.s89ab, OFFSET, PTR + 8); #define vstore_partial_13(DATA, OFFSET, PTR) \ vstore_partial_8(DATA.s01234567, OFFSET, PTR); \ vstore_partial_5(DATA.s89abc, OFFSET, PTR + 8); #define vstore_partial_14(DATA, OFFSET, PTR) \ vstore_partial_8(DATA.s01234567, OFFSET, PTR); \ vstore_partial_6(DATA.s89abcd, OFFSET, PTR + 8); #define vstore_partial_15(DATA, OFFSET, PTR) \ vstore_partial_8(DATA.s01234567, OFFSET, PTR); \ vstore_partial_7(DATA.s89abcde, OFFSET, PTR + 8); #define vstore_partial_16(DATA, OFFSET, PTR) \ vstore16(DATA, OFFSET, PTR); /** @} */ // end of groupd vstore_partial_n /** @} */ // end of groupd VSTORE_PARTIAL // Convert built-in functions with _sat modifier are not supported in floating point so we create defines // without _sat to overcome this issue #define convert_float_sat convert_float #define convert_float1_sat convert_float #define convert_float2_sat convert_float2 #define convert_float3_sat convert_float3 #define convert_float4_sat convert_float4 #define convert_float8_sat convert_float8 #define convert_float16_sat convert_float16 #define convert_half_sat convert_float #define convert_half1_sat convert_half #define convert_half2_sat convert_half2 #define convert_half3_sat convert_half3 #define convert_half4_sat convert_half4 #define convert_half8_sat convert_half8 #define convert_half16_sat convert_half16 #define convert_float1 convert_float #define convert_half1 convert_half #define convert_char1 convert_char #define convert_uchar1 convert_uchar #define convert_short1 convert_short #define convert_ushort1 convert_ushort #define convert_int1 convert_int #define convert_uint1 convert_uint #define convert_long1 convert_long #define convert_ulong1 convert_ulong #define convert_double1 convert_double #define convert_char1_sat convert_char_sat #define convert_uchar1_sat convert_uchar_sat #define convert_short1_sat convert_short_sat #define convert_ushort1_sat convert_ushort_sat #define convert_int1_sat convert_int_sat #define convert_uint1_sat convert_uint_sat #define convert_long1_sat convert_long_sat #define convert_ulong1_sat convert_ulong_sat #define convert_double1_sat convert_double_sat #define VEC_DATA_TYPE_STR(type, size) type##size #define VEC_DATA_TYPE(type, size) VEC_DATA_TYPE_STR(type, size) #define CL_VEC_DATA_TYPE_STR(type, size) type##size #define CL_VEC_DATA_TYPE(type, size) CL_VEC_DATA_TYPE_STR(type, size) #define CONVERT_STR(x, type) (convert_##type((x))) #define CONVERT(x, type) CONVERT_STR(x, type) #define CONVERT_SAT_STR(x, type) (convert_##type##_sat((x))) #define CONVERT_SAT(x, type) CONVERT_SAT_STR(x, type) #define CONVERT_SAT_ROUND_STR(x, type, round) (convert_##type##_sat_##round((x))) #define CONVERT_SAT_ROUND(x, type, round) CONVERT_SAT_ROUND_STR(x, type, round) #define VECTOR_DECLARATION(name) \ __global uchar *name##_ptr, \ uint name##_stride_x, \ uint name##_step_x, \ uint name##_offset_first_element_in_bytes #define IMAGE_DECLARATION(name) \ __global uchar *name##_ptr, \ uint name##_stride_x, \ uint name##_step_x, \ uint name##_stride_y, \ uint name##_step_y, \ uint name##_offset_first_element_in_bytes #define TENSOR3D_DECLARATION(name) \ __global uchar *name##_ptr, \ uint name##_stride_x, \ uint name##_step_x, \ uint name##_stride_y, \ uint name##_step_y, \ uint name##_stride_z, \ uint name##_step_z, \ uint name##_offset_first_element_in_bytes #define TENSOR4D_DECLARATION(name) \ __global uchar *name##_ptr, \ uint name##_stride_x, \ uint name##_step_x, \ uint name##_stride_y, \ uint name##_step_y, \ uint name##_stride_z, \ uint name##_step_z, \ uint name##_stride_w, \ uint name##_step_w, \ uint name##_offset_first_element_in_bytes #define CONVERT_TO_VECTOR_STRUCT(name) \ update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x) #define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name) \ update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0) #define CONVERT_TO_IMAGE_STRUCT(name) \ update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y) #define CONVERT_TO_IMAGE_STRUCT_NO_STEP(name) \ update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0) #define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \ update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z) #define CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(name) \ update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, name##_step_z) #define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \ update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z) #define CONVERT_TO_TENSOR3D_STRUCT(name) \ update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \ name##_stride_z, name##_step_z) #define CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(name) \ update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0) #define CONVERT_TO_TENSOR4D_STRUCT(name, mod_size) \ update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \ name##_stride_z, name##_step_z, name##_stride_w, name##_step_w, mod_size) #define CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(name, mod_size) \ update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0, name##_stride_w, 0, mod_size) /** Structure to hold Vector information */ typedef struct Vector { __global uchar *ptr; /**< Pointer to the starting postion of the buffer */ int offset_first_element_in_bytes; /**< The offset of the first element in the source image */ int stride_x; /**< Stride of the image in X dimension (in bytes) */ } Vector; /** Structure to hold Image information */ typedef struct Image { __global uchar *ptr; /**< Pointer to the starting postion of the buffer */ int offset_first_element_in_bytes; /**< The offset of the first element in the source image */ int stride_x; /**< Stride of the image in X dimension (in bytes) */ int stride_y; /**< Stride of the image in Y dimension (in bytes) */ } Image; /** Structure to hold 3D tensor information */ typedef struct Tensor3D { __global uchar *ptr; /**< Pointer to the starting postion of the buffer */ int offset_first_element_in_bytes; /**< The offset of the first element in the source image */ int stride_x; /**< Stride of the image in X dimension (in bytes) */ int stride_y; /**< Stride of the image in Y dimension (in bytes) */ int stride_z; /**< Stride of the image in Z dimension (in bytes) */ } Tensor3D; /** Structure to hold 4D tensor information */ typedef struct Tensor4D { __global uchar *ptr; /**< Pointer to the starting postion of the buffer */ int offset_first_element_in_bytes; /**< The offset of the first element in the source image */ int stride_x; /**< Stride of the image in X dimension (in bytes) */ int stride_y; /**< Stride of the image in Y dimension (in bytes) */ int stride_z; /**< Stride of the image in Z dimension (in bytes) */ int stride_w; /**< Stride of the image in W dimension (in bytes) */ } Tensor4D; /** Wrap vector information into an Vector structure, and make the pointer point at this workitem's data. * * @param[in] ptr Pointer to the starting postion of the buffer * @param[in] offset_first_element_in_bytes The offset of the first element in the source vector * @param[in] stride_x Stride of the vector in X dimension (in bytes) * @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes) * * @return An image object */ inline Vector update_vector_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x) { Vector vector = { .ptr = ptr, .offset_first_element_in_bytes = offset_first_element_in_bytes, .stride_x = stride_x, }; vector.ptr += vector.offset_first_element_in_bytes + get_global_id(0) * step_x; return vector; } /** Wrap image information into an Image structure, and make the pointer point at this workitem's data. * * @param[in] ptr Pointer to the starting postion of the buffer * @param[in] offset_first_element_in_bytes The offset of the first element in the source image * @param[in] stride_x Stride of the image in X dimension (in bytes) * @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes) * @param[in] stride_y Stride of the image in Y dimension (in bytes) * @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes) * * @return An image object */ inline Image update_image_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y) { Image img = { .ptr = ptr, .offset_first_element_in_bytes = offset_first_element_in_bytes, .stride_x = stride_x, .stride_y = stride_y }; img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y; return img; } /** Wrap 3D tensor information into an image structure, and make the pointer point at this workitem's data. * * @param[in] ptr Pointer to the starting postion of the buffer * @param[in] offset_first_element_in_bytes The offset of the first element in the source image * @param[in] stride_x Stride of the image in X dimension (in bytes) * @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes) * @param[in] stride_y Stride of the image in Y dimension (in bytes) * @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] stride_z Stride of the image in Z dimension (in bytes) * @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes) * * @return A 3D tensor object */ inline Image update_image_from_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z) { Image img = { .ptr = ptr, .offset_first_element_in_bytes = offset_first_element_in_bytes, .stride_x = stride_x, .stride_y = stride_y }; img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z; return img; } /** Wrap 3D tensor information into an tensor structure, and make the pointer point at this workitem's data. * * @param[in] ptr Pointer to the starting postion of the buffer * @param[in] offset_first_element_in_bytes The offset of the first element in the source image * @param[in] stride_x Stride of the image in X dimension (in bytes) * @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes) * @param[in] stride_y Stride of the image in Y dimension (in bytes) * @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] stride_z Stride of the image in Z dimension (in bytes) * @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes) * * @return A 3D tensor object */ inline Tensor3D update_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z) { Tensor3D tensor = { .ptr = ptr, .offset_first_element_in_bytes = offset_first_element_in_bytes, .stride_x = stride_x, .stride_y = stride_y, .stride_z = stride_z }; tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z; return tensor; } inline Tensor4D update_tensor4D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z, uint stride_w, uint step_w, uint mod_size) { Tensor4D tensor = { .ptr = ptr, .offset_first_element_in_bytes = offset_first_element_in_bytes, .stride_x = stride_x, .stride_y = stride_y, .stride_z = stride_z, .stride_w = stride_w }; tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + (get_global_id(2) % mod_size) * step_z + (get_global_id(2) / mod_size) * step_w; return tensor; } /** Get the pointer position of a Vector * * @param[in] vec Pointer to the starting position of the buffer * @param[in] x Relative X position */ inline __global const uchar *vector_offset(const Vector *vec, int x) { return vec->ptr + x * vec->stride_x; } /** Get the pointer position of a Image * * @param[in] img Pointer to the starting position of the buffer * @param[in] x Relative X position * @param[in] y Relative Y position */ inline __global uchar *offset(const Image *img, int x, int y) { return img->ptr + x * img->stride_x + y * img->stride_y; } /** Get the pointer position of a Tensor3D * * @param[in] tensor Pointer to the starting position of the buffer * @param[in] x Relative X position * @param[in] y Relative Y position * @param[in] z Relative Z position */ inline __global const uchar *tensor3D_offset(const Tensor3D *tensor, int x, int y, int z) { return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z; } /** Get the pointer position of a Tensor4D * * @param[in] tensor Pointer to the starting position of the buffer * @param[in] x Relative X position * @param[in] y Relative Y position * @param[in] z Relative Z position * @param[in] w Relative W position */ inline __global const uchar *tensor4D_offset(const Tensor4D *tensor, int x, int y, int z, int w) { return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z + w * tensor->stride_w; } #endif // _HELPER_H