/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #define LOAD_ROW_1(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##0 = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 0 * STRIDE_Y + Z##0)); #define LOAD_ROW_2(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_1(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##1 = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 1 * STRIDE_Y + Z##1)); #define LOAD_ROW_3(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_2(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##2 = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 2 * STRIDE_Y + Z##2)); #define LOAD_ROW_4(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_3(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##3 = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 3 * STRIDE_Y + Z##3)); #define LOAD_ROW_5(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_4(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##4 = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 4 * STRIDE_Y + Z##4)); #define LOAD_ROW_6(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_5(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##5 = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 5 * STRIDE_Y + Z##5)); #define LOAD_ROW_7(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_6(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##6 = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 6 * STRIDE_Y + Z##6)); #define LOAD_ROW_8(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_7(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##7 = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 7 * STRIDE_Y + Z##7)); #define LOAD_ROW_9(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_8(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##8 = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 8 * STRIDE_Y + Z##8)); #define LOAD_ROW_10(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_9(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##9 = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 9 * STRIDE_Y + Z##9)); #define LOAD_ROW_11(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_10(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##A = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 10 * STRIDE_Y + Z##A)); #define LOAD_ROW_12(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_11(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##B = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 11 * STRIDE_Y + Z##B)); #define LOAD_ROW_13(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_12(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##C = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 12 * STRIDE_Y + Z##C)); #define LOAD_ROW_14(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_13(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##D = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 13 * STRIDE_Y + Z##D)); #define LOAD_ROW_15(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_14(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##E = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 14 * STRIDE_Y + Z##E)); #define LOAD_ROW_16(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ LOAD_ROW_15(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) \ VEC_DATA_TYPE(DATA_TYPE, N0) \ BASENAME##F = VLOAD(N0)(0, (__global DATA_TYPE *)(PTR + OFFSET + 15 * STRIDE_Y + Z##F)); // LOAD_ROW_n loads the rows 0..n-1 in variables BASENAME##0 to BASENAME##(n-1) #define LOAD_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) LOAD_ROW_##M0(N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) /** Load Blocks of M0 consecutive rows and N0 consecutive columns when using Z offset as well * Supported cases M0=1,2,3..16. N0=1,2,3,4,8,16, for variables BASENAME[0..M0] * The data to load is expected to have consecutive names for each row, For e.g. For M0=3, and basename=c, the expected data is c0, c1 and c2. * The Z offset is expected to have consecutive names For e.g. For M0=3, and Z=zin, the expected z offsets are zin0, zin1 and zin2. */ #define LOAD_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) LOAD_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, OFFSET, STRIDE_Y, Z) #define CALCULATE_Z_OFFSET_1(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ Z##0 = (0 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \ Z##0 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##0); \ Z##0 *= (CROSS_PLANE_PAD * STRIDE_Y); #define CALCULATE_Z_OFFSET_2(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ CALCULATE_Z_OFFSET_1(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ Z##1 = (1 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \ Z##1 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##1); \ Z##1 *= (CROSS_PLANE_PAD * STRIDE_Y); #define CALCULATE_Z_OFFSET_3(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ CALCULATE_Z_OFFSET_2(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ Z##2 = (2 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \ Z##2 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##2); \ Z##2 *= (CROSS_PLANE_PAD * STRIDE_Y); #define CALCULATE_Z_OFFSET_4(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ CALCULATE_Z_OFFSET_3(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ Z##3 = (3 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \ Z##3 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##3); \ Z##3 *= (CROSS_PLANE_PAD * STRIDE_Y); #define CALCULATE_Z_OFFSET_5(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ CALCULATE_Z_OFFSET_4(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ Z##4 = (4 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \ Z##4 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##4); \ Z##4 *= (CROSS_PLANE_PAD * STRIDE_Y); #define CALCULATE_Z_OFFSET_6(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ CALCULATE_Z_OFFSET_5(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ Z##5 = (5 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \ Z##5 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##5); \ Z##5 *= (CROSS_PLANE_PAD * STRIDE_Y); #define CALCULATE_Z_OFFSET_7(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ CALCULATE_Z_OFFSET_6(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ Z##6 = (6 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \ Z##6 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##6); \ Z##6 *= (CROSS_PLANE_PAD * STRIDE_Y); #define CALCULATE_Z_OFFSET_8(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ CALCULATE_Z_OFFSET_7(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) \ Z##7 = (7 + (DATA_TYPE)(Y * (DATA_TYPE)M0)) / (DATA_TYPE)HEIGHT_GEMM3D; \ Z##7 = min((DATA_TYPE)(DEPTH_GEMM3D - 1), Z##7); \ Z##7 *= (CROSS_PLANE_PAD * STRIDE_Y); // CALCULATE_Z_OFFSET_n calculates Z for Z##0 to Z##(n-1) #define CALCULATE_Z_OFFSET_STR(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) CALCULATE_Z_OFFSET_##M0(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) /** The Z offsets are expected to have consecutive names, For e.g. For M0=3, and Z=zin, the expected Z offsets are zin1, zin2, zin3. * Note for the REINTERPRET_INPUT_AS_3D case * Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension * in order to take into account the presence of possible cross plane paddings * * | | * | plane0 | * | | * |__________________| * |******************| * | cross_plane_pad | * |******************| * | | * | plane1 | * | | * |__________________| */ #define CALCULATE_Z_OFFSET(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) CALCULATE_Z_OFFSET_STR(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) #define STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##0, 0, (__global DATA_TYPE *)(PTR + 0 * STRIDE_Y + Z##0)); #define STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##1, 0, (__global DATA_TYPE *)(PTR + 1 * STRIDE_Y + Z##1)); #define STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##2, 0, (__global DATA_TYPE *)(PTR + 2 * STRIDE_Y + Z##2)); #define STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##3, 0, (__global DATA_TYPE *)(PTR + 3 * STRIDE_Y + Z##3)); #define STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##4, 0, (__global DATA_TYPE *)(PTR + 4 * STRIDE_Y + Z##4)); #define STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##5, 0, (__global DATA_TYPE *)(PTR + 5 * STRIDE_Y + Z##5)); #define STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##6, 0, (__global DATA_TYPE *)(PTR + 6 * STRIDE_Y + Z##6)); #define STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##7, 0, (__global DATA_TYPE *)(PTR + 7 * STRIDE_Y + Z##7)); #define STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##8, 0, (__global DATA_TYPE *)(PTR + 8 * STRIDE_Y + Z##8)); #define STORE_ROW_10(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##9, 0, (__global DATA_TYPE *)(PTR + 9 * STRIDE_Y + Z##9)); #define STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_10(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##A, 0, (__global DATA_TYPE *)(PTR + 10 * STRIDE_Y + Z##A)); #define STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##B, 0, (__global DATA_TYPE *)(PTR + 11 * STRIDE_Y + Z##B)); #define STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##C, 0, (__global DATA_TYPE *)(PTR + 12 * STRIDE_Y + Z##C)); #define STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##D, 0, (__global DATA_TYPE *)(PTR + 13 * STRIDE_Y + Z##D)); #define STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##E, 0, (__global DATA_TYPE *)(PTR + 14 * STRIDE_Y + Z##E)); #define STORE_ROW_16(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \ VSTORE(N0) \ (BASENAME##F, 0, (__global DATA_TYPE *)(PTR + 15 * STRIDE_Y + Z##F)); // STORE_ROW_n stores the rows 0..n-1 from variables BASENAME##0 to BASENAME##(n-1) #define STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) STORE_ROW_##M0(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) /** Store Blocks of M0 consecutive rows and N0 consecutive columns when using Z offset as well * Supported cases M0=1,2,3..16. N0=2,3,4,8,16, for variables BASENAME[0..M] * The data to store is expected to have consecutive names for each row, For e.g. For M0=3, and basename=c, the expected data is c0, c1 and c2. * The Z offset is expected to have consecutive names For e.g. For M0=3, and Z=zin, the expected z offsets are zin0, zin1 and zin2. */ #define STORE_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) #define SCALE_ROW_1(DATA_TYPE, BASENAME, SCALE) \ BASENAME##0 = BASENAME##0 * (DATA_TYPE)SCALE; #define SCALE_ROW_2(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_1(DATA_TYPE, BASENAME, SCALE) \ BASENAME##1 = BASENAME##1 * (DATA_TYPE)SCALE; #define SCALE_ROW_3(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_2(DATA_TYPE, BASENAME, SCALE) \ BASENAME##2 = BASENAME##2 * (DATA_TYPE)SCALE; #define SCALE_ROW_4(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_3(DATA_TYPE, BASENAME, SCALE) \ BASENAME##3 = BASENAME##3 * (DATA_TYPE)SCALE; #define SCALE_ROW_5(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_4(DATA_TYPE, BASENAME, SCALE) \ BASENAME##4 = BASENAME##4 * (DATA_TYPE)SCALE; #define SCALE_ROW_6(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_5(DATA_TYPE, BASENAME, SCALE) \ BASENAME##5 = BASENAME##5 * (DATA_TYPE)SCALE; #define SCALE_ROW_7(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_6(DATA_TYPE, BASENAME, SCALE) \ BASENAME##6 = BASENAME##6 * (DATA_TYPE)SCALE; #define SCALE_ROW_8(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_7(DATA_TYPE, BASENAME, SCALE) \ BASENAME##7 = BASENAME##7 * (DATA_TYPE)SCALE; #define SCALE_ROW_9(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_8(DATA_TYPE, BASENAME, SCALE) \ BASENAME##8 = BASENAME##8 * (DATA_TYPE)SCALE; #define SCALE_ROW_10(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_9(DATA_TYPE, BASENAME, SCALE) \ BASENAME##9 = BASENAME##9 * (DATA_TYPE)SCALE; #define SCALE_ROW_11(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_10(DATA_TYPE, BASENAME, SCALE) \ BASENAME##A = BASENAME##A * (DATA_TYPE)SCALE; #define SCALE_ROW_12(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_11(DATA_TYPE, BASENAME, SCALE) \ BASENAME##B = BASENAME##B * (DATA_TYPE)SCALE; #define SCALE_ROW_13(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_12(DATA_TYPE, BASENAME, SCALE) \ BASENAME##C = BASENAME##C * (DATA_TYPE)SCALE; #define SCALE_ROW_14(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_13(DATA_TYPE, BASENAME, SCALE) \ BASENAME##D = BASENAME##D * (DATA_TYPE)SCALE; #define SCALE_ROW_15(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_14(DATA_TYPE, BASENAME, SCALE) \ BASENAME##E = BASENAME##E * (DATA_TYPE)SCALE; #define SCALE_ROW_16(DATA_TYPE, BASENAME, SCALE) \ SCALE_ROW_15(DATA_TYPE, BASENAME, SCALE) \ BASENAME##F = BASENAME##F * (DATA_TYPE)SCALE; // SCALE_ROW_n scales the variables BASENAME##0 to BASENAME##(n-1) by SCALE #define SCALE_BLOCK_STR(N, DATA_TYPE, BASENAME, SCALE) SCALE_ROW_##N(DATA_TYPE, BASENAME, SCALE) /** Scale elements stored in variables BASENAME##0 to BASENAME##(N-1) by SCALE * Supported cases N=1,2,3..16, for variables BASENAME[0..N] */ #define SCALE_BLOCK(N, DATA_TYPE, BASENAME, SCALE) SCALE_BLOCK_STR(N, DATA_TYPE, BASENAME, SCALE)