/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(DATA_TYPE) && defined(AXIS) /** Performs the Gather operation along the chosen axis * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short * @note Axis should be given as a preprocessor argument using -DAXIS=axis. e.g. -DAXIS=1 * @attention Output tensor depth should be given as a preprocessor argument using -DOUTPUT_DIM_Z=size. e.g. -DOUTPUT_DIM_Z=16 * @attention Input tensor depth should be given as a preprocessor argument using -DINPUT_DIM_Z=size. e.g. -DINPUT_DIM_Z=16 * * * @param[in] input_ptr Pointer to the source tensor. Supported data types: U8/S8/U16/S16/U32/S32/F16/F32 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per work item (in bytes) * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per work item (in bytes) * @param[in] input_stride_z Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per work item (in bytes) * @param[in] input_stride_w Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_w input_stride_w * number of elements along W processed per work item (in bytes) * @param[in] input_offset_first_element_in_bytes Offset of the first element in the source tensor * @param[in] indices_ptr Pointer to the indices vector. Supported data types: S32/U32. * @param[in] indices_stride_x Stride of the indices vector in X dimension (in bytes) * @param[in] indices_step_x input_stride_x * number of elements along X processed per work item (in bytes) * @param[in] indices_offset_first_element_in_bytes Offset of the first element in the indices vector * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per work item (in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per work item (in bytes) * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per work item (in bytes) * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes) * @param[in] output_step_w output_stride_w * number of elements along W processed per work item (in bytes) * @param[in] output_offset_first_element_in_bytes Offset of the first element in the destination tensor */ __kernel void gather( TENSOR4D_DECLARATION(input), VECTOR_DECLARATION(indices), TENSOR4D_DECLARATION(output)) { const int px = get_global_id(0); const int py = get_global_id(1); const int pz = get_global_id(2) % OUTPUT_DIM_Z; const int pw = get_global_id(2) / OUTPUT_DIM_Z; const Tensor4D input = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(input, INPUT_DIM_Z); const Vector indices = CONVERT_TO_VECTOR_STRUCT_NO_STEP(indices); Tensor4D output = CONVERT_TO_TENSOR4D_STRUCT(output, OUTPUT_DIM_Z); #if AXIS == 0 const uint index = *(__global const uint *)vector_offset(&indices, px); __global const uchar *input_addr = tensor4D_offset(&input, index, py, pz, pw); #elif AXIS == 1 const uint index = *(__global const uint *)vector_offset(&indices, py); __global const uchar *input_addr = tensor4D_offset(&input, px, index, pz, pw); #elif AXIS == 2 const uint index = *(__global const uint *)vector_offset(&indices, pz); __global const uchar *input_addr = tensor4D_offset(&input, px, py, index, pw); #elif AXIS == 3 const uint index = *(__global const uint *)vector_offset(&indices, pw); __global const uchar *input_addr = tensor4D_offset(&input, px, py, pz, index); #endif //AXIS *(__global DATA_TYPE *)output.ptr = *((__global const DATA_TYPE *)input_addr); } #endif //defined(DATA_TYPE) && defined(AXIS)