/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #include "warp_helpers.h" #if defined(DATA_TYPE) && defined(OPERATION) // Calculate exponential #define exp_op(input) exp(input) // Calculate reverse square root #define rsqrt_op(input) rsqrt(input) // Calculate negative #define neg_op(input) (-input) // Calculate sine #define sin_op(input) sin(input) // Calculate abs for floating point values #define fabs_op(input) fabs(input) // Calculate natural_log #define natural_log_op(input) log(input) // Calculate round (Cannot use round function as it rounds halfway cases away from zero). #if defined(VEC_SIZE) #define round_op(input) CONVERT(CONVERT_SAT_ROUND(input, VEC_DATA_TYPE(int, VEC_SIZE), rte), VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)) #else // defined(VEC_SIZE #define round_op(input) CONVERT(CONVERT_SAT_ROUND(input, int, rte), DATA_TYPE) #endif // defined(VEC_SIZE /** Applies element wise unary operator in a tensor. * * @param[in] in_ptr Pointer to the source image. Supported data types: F16/32. * @param[in] in_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in_step_x in_stride_x * number of elements along X processed per work item (in bytes) * @param[in] in_offset_first_element_in_bytes Offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: F16/32. * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per work item (in bytes) * @param[in] out_offset_first_element_in_bytes Offset of the first element in the destination image */ __kernel void elementwise_unary( VECTOR_DECLARATION(in), VECTOR_DECLARATION(out)) { Vector in = CONVERT_TO_VECTOR_STRUCT(in); Vector out = CONVERT_TO_VECTOR_STRUCT(out); #if defined(VEC_SIZE) && defined(LAST_ACCESSED_X) // Check if access on width gets out of bounds // If it does shift access vector to access elements within bounds const int xi = (int)(get_global_id(0) * VEC_SIZE); in.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * in_stride_x; out.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * out_stride_x; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in.ptr); VSTORE(VEC_SIZE) (OPERATION(data), 0, (__global DATA_TYPE *)out.ptr); #else // !defined(VEC_SIZE) || !defined(LAST_ACCESSED_X) *((__global DATA_TYPE *)(out.ptr)) = (DATA_TYPE)(OPERATION(*((__global DATA_TYPE *)in.ptr))); #endif // defined(VEC_SIZE) && defined(LAST_ACCESSED_X) } #endif // defined(DATA_TYPE) && defined(OPERATION)