/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #define SUB(x, y) (x - y) #define ADD(x, y) (x + y) #define MAX(x, y) max((x), (y)) #define MIN(x, y) min((x), (y)) #define SQUARED_DIFF(x, y) (x - y) * (x - y) #define PRELU(x, y) (select(y * x, x, x > (DATA_TYPE_OUT)0)) #define DIV(x, y) (x / y) #define CONVERT_RTE(x, type) (convert_##type##_rte((x))) #define CONVERT_DOWN(x, type) CONVERT_RTE(x, type) #define OP_FUN_NAME_STR(op) elementwise_operation_##op##_quantized #define OP_FUN_NAME(op) OP_FUN_NAME_STR(op) #if defined(OP) && defined(VEC_SIZE) && defined(OFFSET_IN1) && defined(OFFSET_IN2) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) && defined(DATA_TYPE_OUT) #define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE) #define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE) #define VEC_TYPE VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE) /** This function executes an element-wise operation among two tensors. * * @attention The quantization offset of the first operand must be passed at compile time using -DOFFSET_IN1, i.e. -DOFFSET_IN1=10 * @attention The quantization offset of the second operand must be passed at compile time using -DOFFSET_IN2, i.e. -DOFFSET_IN2=10 * @attention The quantization offset of the output must be passed at compile time using -DOFFSET_OUT, i.e. -DOFFSET_OUT=10 * @attention The quantization scale of the first operand must be passed at compile time using -DSCALE_IN1, i.e. -DSCALE_IN1=10 * @attention The quantization scale of the second operand must be passed at compile time using -DSCALE_IN2, i.e. -DSCALE_IN2=10 * @attention The quantization scale of the output must be passed at compile time using -DSCALE_OUT, i.e. -DSCALE_OUT=10 * @attention To perform saturating operation -DSATURATE has to be passed to the compiler otherwise wrapping policy will be used. * @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * @attention The element-wise operation to be executed has to be passed at compile time using -DOP (e.g., -DOP=ADD) * @attention For QSYMM16 operations OFFSET_IN1, OFFSET_IN2 and OFFSET_OUT must be set to zero * @attention The data type must be passed at compile time using -DDATA_TYPE_OUT, i.e. -DDATA_TYPE_OUT=uchar * * @param[in] in1_ptr Pointer to the source tensor. Supported data types: QASYMM8/QSYMM16 * @param[in] in1_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] in1_step_x in1_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in1_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] in1_step_y in1_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in1_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] in1_step_z in1_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] in1_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] in2_ptr Pointer to the source tensor. Supported data types: same as @p in1_ptr * @param[in] in2_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] in2_step_x in2_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in2_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] in2_step_y in2_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in2_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] in2_step_z in2_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] in2_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] out_ptr Pointer to the destination tensor. Supported data types: same as @p in1_ptr * @param[in] out_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] out_step_z out_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void OP_FUN_NAME(OP)( TENSOR3D_DECLARATION(in1), TENSOR3D_DECLARATION(in2), TENSOR3D_DECLARATION(out)) { // Get pixels pointer Tensor3D in1 = CONVERT_TO_TENSOR3D_STRUCT(in1); Tensor3D in2 = CONVERT_TO_TENSOR3D_STRUCT(in2); Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out); VEC_INT in_a = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_OUT *)in1.ptr), VEC_INT); VEC_INT in_b = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_OUT *)in2.ptr), VEC_INT); in_a = SUB(in_a, (VEC_INT)((int)OFFSET_IN1)); in_b = SUB(in_b, (VEC_INT)((int)OFFSET_IN2)); const VEC_FLOAT in1f32 = CONVERT(in_a, VEC_FLOAT) * (VEC_FLOAT)((float)SCALE_IN1); const VEC_FLOAT in2f32 = CONVERT(in_b, VEC_FLOAT) * (VEC_FLOAT)((float)SCALE_IN2); const VEC_FLOAT qresf32 = OP(in1f32, in2f32) / ((VEC_FLOAT)(float)SCALE_OUT) + ((VEC_FLOAT)((float)OFFSET_OUT)); const VEC_TYPE res = CONVERT_SAT(CONVERT_DOWN(qresf32, VEC_INT), VEC_TYPE); // Store result VSTORE(VEC_SIZE) (res, 0, (__global DATA_TYPE_OUT *)out.ptr); } #endif /* defined(OFFSET_IN1) && defined(OFFSET_IN2) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) && defined(DATA_TYPE_OUT) */