/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" /** List of all the operations supported by this kernel. * @note ADD and SUB operations, when executed on integers, support saturation */ #ifdef SATURATE #define ADD(x, y) add_sat((x), (y)) #define SUB(x, y) sub_sat((x), (y)) #else /* SATURATE */ #define ADD(x, y) (x) + (y) #define SUB(x, y) (x) - (y) #endif /* SATURATE */ #define MAX(x, y) max(x, y) #define MIN(x, y) min(x, y) #define SQUARED_DIFF(x, y) (x - y) * (x - y) #define DIV(x, y) (x / y) #define POWER(x, y) pow(x, y) #define PRELU(x, y) (select(y * x, x, x > (DATA_TYPE_OUT)0)) #define OP_FUN_NAME_STR(op) elementwise_operation_##op #define OP_FUN_NAME(op) OP_FUN_NAME_STR(op) #if defined(OP) && defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(DATA_TYPE_OUT) && defined(VEC_SIZE) /** This function executes an element-wise operation among two tensors. * * @attention The input and output data_types need to be passed at compile time using -DDATA_TYPE_IN1, -DDATA_TYPE_IN2 and -DDATA_TYPE_OUT: * e.g. -DDATA_TYPE_IN1=uchar -DDATA_TYPE_IN2=uchar -DDATA_TYPE_OUT=short * @attention To perform saturating operation -DSATURATE has to be passed to the compiler otherwise wrapping policy will be used. * @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * @attention The element-wise operation to be executed has to be passed at compile time using -DOP (e.g., -DOP=ADD) * * @param[in] in1_ptr Pointer to the source tensor. Supported data types: U8/S16/F16/F32 * @param[in] in1_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] in1_step_x in1_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in1_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] in1_step_y in1_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in1_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] in1_step_z in1_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] in1_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] in2_ptr Pointer to the source tensor. Supported data types: U8/S16/F16/F32 * @param[in] in2_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] in2_step_x in2_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in2_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] in2_step_y in2_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in2_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] in2_step_z in2_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] in2_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] out_ptr Pointer to the destination tensor. Supported data types: U8 (only if both inputs are U8), S16/F16/F32 * @param[in] out_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] out_step_z out_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void OP_FUN_NAME(OP)( TENSOR3D_DECLARATION(in1), TENSOR3D_DECLARATION(in2), TENSOR3D_DECLARATION(out)) { // Get pixels pointer Tensor3D in1 = CONVERT_TO_TENSOR3D_STRUCT(in1); Tensor3D in2 = CONVERT_TO_TENSOR3D_STRUCT(in2); Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out); // Load values VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE) in_a = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_IN1 *)in1.ptr), VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE)); VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE) in_b = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_IN2 *)in2.ptr), VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE)); // Calculate and store result VSTORE(VEC_SIZE) (OP(in_a, in_b), 0, (__global DATA_TYPE_OUT *)out.ptr); } #endif /* defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(DATA_TYPE_OUT) && defined(VEC_SIZE) */