/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #undef CONVERT_SAT #if defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH) && defined(DATA_LAYOUT_NHWC) #define PTR_TO_VALUE(PTR, DATA_TYPE) *((__global DATA_TYPE *)(PTR)) #define CONVOLUTION1x9_STRIDE1_NHWC(acc, row_ptr, weights_ptr) \ ({ \ VEC_DATA_TYPE(DATA_TYPE, 8) \ src0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \ PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE)); \ VEC_DATA_TYPE(DATA_TYPE, 8) \ src1 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \ PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE)); \ VEC_DATA_TYPE(DATA_TYPE, 8) \ weights_values0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \ PTR_TO_VALUE(weights_ptr + 0 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 1 * weights_stride_y, DATA_TYPE), \ PTR_TO_VALUE(weights_ptr + 2 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 3 * weights_stride_y, DATA_TYPE), \ PTR_TO_VALUE(weights_ptr + 4 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 5 * weights_stride_y, DATA_TYPE), \ PTR_TO_VALUE(weights_ptr + 6 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 7 * weights_stride_y, DATA_TYPE)); \ DATA_TYPE weights_value1 = PTR_TO_VALUE(weights_ptr + 8 * weights_stride_y, DATA_TYPE); \ acc += src0 * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s345, src0.s67, src1.s012) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s3; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s4567, src1.s0123) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s4; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s567, src1.s0123, src1.s4) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s5; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s67, src1.s012, src1.s345) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s6; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s7, src1.s0123, src1.s456) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s7; \ acc += src1 * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_value1; \ }) #define CONVOLUTION1x9_STRIDE2_NHWC(acc, row_ptr, weights_ptr) \ ({ \ VEC_DATA_TYPE(DATA_TYPE, 16) \ src0 = (VEC_DATA_TYPE(DATA_TYPE, 16))( \ PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE)); \ VEC_DATA_TYPE(DATA_TYPE, 8) \ src1 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \ PTR_TO_VALUE(row_ptr + 16 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 17 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 18 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 19 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 20 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 21 * src_stride_y, DATA_TYPE), \ PTR_TO_VALUE(row_ptr + 22 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 23 * src_stride_y, DATA_TYPE)); \ VEC_DATA_TYPE(DATA_TYPE, 8) \ weights_values0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \ PTR_TO_VALUE(weights_ptr + 0 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 1 * weights_stride_y, DATA_TYPE), \ PTR_TO_VALUE(weights_ptr + 2 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 3 * weights_stride_y, DATA_TYPE), \ PTR_TO_VALUE(weights_ptr + 4 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 5 * weights_stride_y, DATA_TYPE), \ PTR_TO_VALUE(weights_ptr + 6 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 7 * weights_stride_y, DATA_TYPE)); \ DATA_TYPE weights_value1 = PTR_TO_VALUE(weights_ptr + 8 * weights_stride_y, DATA_TYPE); \ acc += src0.s02468ACE * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1.s0) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s3579, src0.sBDF, src1.s1) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s3; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s468A, src0.sCE, src1.s02) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s4; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s579, src0.sBDF, src1.s13) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s5; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s68A, src0.sCE, src1.s024) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s6; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s79B, src0.sDF, src1.s135) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s7; \ acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s8AC, src0.sE, src1.s0246) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_value1; \ }) #if defined(VEC_SIZE) #define VFMA(acc, w, src0, src1, src2, src3, src4, src5, src6, src7) \ ({ \ acc##0 = fma(src0, w, acc##0); \ acc##1 = fma(src1, w, acc##1); \ acc##2 = fma(src2, w, acc##2); \ acc##3 = fma(src3, w, acc##3); \ acc##4 = fma(src4, w, acc##4); \ acc##5 = fma(src5, w, acc##5); \ acc##6 = fma(src6, w, acc##6); \ acc##7 = fma(src7, w, acc##7); \ }) #define CONVOLUTION1x9_STRIDE1_NHWC_BIFROST(acc, row_ptr, weights_ptr) \ ({ \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)row_ptr); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 2 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 3 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 4 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 5 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 6 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 7 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 8 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 9 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 10 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 11 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src12 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 12 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src13 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 13 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src14 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 14 * src_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ src15 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 15 * src_stride_y)); \ \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 0 * weights_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 1 * weights_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 2 * weights_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 3 * weights_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 4 * weights_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 5 * weights_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 6 * weights_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 7 * weights_stride_y)); \ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \ w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 8 * weights_stride_y)); \ \ VFMA(acc, w0, src0, src1, src2, src3, src4, src5, src6, src7); \ VFMA(acc, w1, src1, src2, src3, src4, src5, src6, src7, src8); \ VFMA(acc, w2, src2, src3, src4, src5, src6, src7, src8, src9); \ VFMA(acc, w3, src3, src4, src5, src6, src7, src8, src9, src10); \ VFMA(acc, w4, src4, src5, src6, src7, src8, src9, src10, src11); \ VFMA(acc, w5, src5, src6, src7, src8, src9, src10, src11, src12); \ VFMA(acc, w6, src6, src7, src8, src9, src10, src11, src12, src13); \ VFMA(acc, w7, src7, src8, src9, src10, src11, src12, src13, src14); \ VFMA(acc, w8, src8, src9, src10, src11, src12, src13, src14, src15); \ }) #if VEC_SIZE == 4 #define REDUCE(out, vec) \ ({ \ VEC_DATA_TYPE(DATA_TYPE, 2) \ tmp1 = vec.s01 + vec.s23; \ out = tmp1.s0 + tmp1.s1; \ }) #else // VEC_SIZE == 4 #error("Not supported") #endif // VEC_SIZE == 4 #if STRIDE_X == 1 #define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE1_NHWC_BIFROST(acc, row_ptr, weights_ptr) #else // STRIDE_X == 1 #error "Not supported" #endif // STRIDE_X == 1 #else // defined(VEC_SIZE) #if STRIDE_X == 1 #define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE1_NHWC(acc, row_ptr, weights_ptr) #elif STRIDE_X == 2 // STRIDE_X == 1 #define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE2_NHWC(acc, row_ptr, weights_ptr) #else // STRIDE_X == 1 #error "STRIDE_X larger than 2 is not supported" #endif // STRIDE_X == 1 #endif // defined(VEC_SIZE) //#if defined(VEC_SIZE) /** This kernel performs a direct convolution to convolve the low three dimensions in a tensor with the NHWC data layout * * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float * @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH * @note If biases are used then -DHAS_BIAS has to be passed at compile time * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes) * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes) * @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes) * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes) * @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Same as @p src_ptr * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes) * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor * @param[in] weights_stride_w (Optional) Stride of the weights tensor in the 4th dimension */ __kernel void direct_convolution9x9_nhwc( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst), TENSOR3D_DECLARATION(weights), #ifdef HAS_BIAS VECTOR_DECLARATION(biases), #endif /* defined(HAS_BIAS) */ unsigned int weights_stride_w) { Image src = CONVERT_TO_IMAGE_STRUCT(src); Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights); Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst); VEC_DATA_TYPE(DATA_TYPE, 8) values = 0; #if defined(VEC_SIZE) VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values0 = 0; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values1 = 0; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values2 = 0; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values3 = 0; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values4 = 0; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values5 = 0; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values6 = 0; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values7 = 0; #define STEP_X (VEC_SIZE) #else // defined(VEC_SIZE) #define STEP_X (1) #endif // defined(VEC_SIZE) const int id0 = get_global_id(0); const int id1 = get_global_id(1); const int id2 = get_global_id(2); __global uchar *weights_addr = (__global uchar *)tensor3D_offset(&weights, 0, 0, 0); __global uchar *src_addr = (__global uchar *)offset(&src, 0, 0) - src_stride_x * id0 + ((id2 * STRIDE_Y) - PAD_TOP) * (int)src_stride_z; weights_addr += id0 * weights_stride_w; #if(PAD_TOP == 1) const int coordy = id2 - PAD_TOP; for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X) { if(coordy < 0) // special case Z = -1 doesn't exists { //skip first row and load the two next ones CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z)); } else if(coordy == (DST_HEIGHT - PAD_TOP - 1)) { // special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the // Z axis has no padding at all. CONVOLUTION1x9_NHWC(values, src_addr, weights_addr); CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z)); } else { CONVOLUTION1x9_NHWC(values, src_addr, weights_addr); CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z)); } src_addr += STEP_X * sizeof(DATA_TYPE); weights_addr += STEP_X * sizeof(DATA_TYPE); } #elif(PAD_TOP == 2) // PAD_TOP == 1 const int coordy = id2 * STRIDE_Y; for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X) { if(coordy == 0) // special case Z = -2 doesn't exists { //skip first row and load the two next ones CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z)); } else if(coordy == 1) // special case Z = -1 doesn't exists { //skip first row and load the two next ones CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z)); } else if(coordy == (SRC_HEIGHT - 5)) { // special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the // Z axis has no padding at all. CONVOLUTION1x9_NHWC(values, src_addr, weights_addr); CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z)); } else if(coordy == (SRC_HEIGHT - 6)) { // special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the // Z axis has no padding at all. CONVOLUTION1x9_NHWC(values, src_addr, weights_addr); CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z)); } else { CONVOLUTION1x9_NHWC(values, src_addr, weights_addr); CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z)); } src_addr += STEP_X * sizeof(DATA_TYPE); weights_addr += STEP_X * sizeof(DATA_TYPE); } #else // PAD_TOP == 1 for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X) { CONVOLUTION1x9_NHWC(values, src_addr, weights_addr); CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z)); CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z)); src_addr += STEP_X * sizeof(DATA_TYPE); weights_addr += STEP_X * sizeof(DATA_TYPE); } #endif // PAD_TOP == 1 #if defined(VEC_SIZE) REDUCE(values.s0, values0); REDUCE(values.s1, values1); REDUCE(values.s2, values2); REDUCE(values.s3, values3); REDUCE(values.s4, values4); REDUCE(values.s5, values5); REDUCE(values.s6, values6); REDUCE(values.s7, values7); #endif // defined(VEC_SIZE) #if defined(HAS_BIAS) Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases); values += (VEC_DATA_TYPE(DATA_TYPE, 8)) * ((__global DATA_TYPE *)(vector_offset(&biases, id0))); #endif // defined(HAS_BIAS) *((__global DATA_TYPE *)(dst.ptr + 0 * dst_stride_y)) = values.s0; *((__global DATA_TYPE *)(dst.ptr + 1 * dst_stride_y)) = values.s1; *((__global DATA_TYPE *)(dst.ptr + 2 * dst_stride_y)) = values.s2; *((__global DATA_TYPE *)(dst.ptr + 3 * dst_stride_y)) = values.s3; *((__global DATA_TYPE *)(dst.ptr + 4 * dst_stride_y)) = values.s4; *((__global DATA_TYPE *)(dst.ptr + 5 * dst_stride_y)) = values.s5; *((__global DATA_TYPE *)(dst.ptr + 6 * dst_stride_y)) = values.s6; *((__global DATA_TYPE *)(dst.ptr + 7 * dst_stride_y)) = values.s7; #undef STEP_X } #endif // defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH) && defined(DATA_LAYOUT_NHWC)