/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(VEC_SIZE) && defined(DATA_TYPE_SRC) && defined(DATA_TYPE_DST) && defined(SCALE) && defined(OFFSET) /** This performs the dequantization of 8-bit unsigned integers to floating point. * * @note Source datatype should be given as a preprocessor argument using -DDATA_TYPE_SRC=type. e.g. -DDATA_TYPE_SRC=char * @note Destination datatype should be given as a preprocessor argument using -DDATA_TYPE_DST=type. e.g. -DDATA_TYPE_DST=float * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * @note Quantization scale of input tensor is passed in with -DSCALE=scale. * @note Quantization offset of input tensor is passed in with -DOFFSET=offset. * * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] output_ptr Pointer to the destination tensor. Supported data types: F16/F32 * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void dequantization_layer( TENSOR3D_DECLARATION(input), TENSOR3D_DECLARATION(output)) { // Get pixels pointer Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); #if defined(LAST_ACCESSED_X) // Check if access on width gets out of bounds // If it does shift access vector to access elements within bounds const int xi = (int)(get_global_id(0) * VEC_SIZE); input.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * input_stride_x; output.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * output_stride_x; // Load data VEC_DATA_TYPE(int, VEC_SIZE) val = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_SRC *)input.ptr), VEC_DATA_TYPE(int, VEC_SIZE)); // Create scale and offset vectors const VEC_DATA_TYPE(float, VEC_SIZE) vscale = SCALE; const VEC_DATA_TYPE(int, VEC_SIZE) voffset = OFFSET; // Dequantize VEC_DATA_TYPE(float, VEC_SIZE) res = vscale * CONVERT((val - voffset), VEC_DATA_TYPE(float, VEC_SIZE)); // Store result VSTORE(VEC_SIZE) (CONVERT(res, VEC_DATA_TYPE(DATA_TYPE_DST, VEC_SIZE)), 0, (__global DATA_TYPE_DST *)output.ptr); #else // !defined(LAST_ACCESSED_X) *((__global DATA_TYPE_DST *)(output.ptr)) = (DATA_TYPE_DST)((float)((int)(*((__global DATA_TYPE_SRC *)(input.ptr))) - (int)(OFFSET)) * (float)(SCALE)); #endif // defined(LAST_ACCESSED_X) } #endif // defined(VEC_SIZE) && defined(DATA_TYPE_SRC) && defined(DATA_TYPE_DST) && defined(SCALE) && defined(OFFSET) #if defined(VEC_SIZE) && defined(DATA_TYPE_SRC) && defined(DATA_TYPE_DST) /** This performs per channel dequantization of 8-bit signed integers to floating point. (NCHW) * * @note Source datatype should be given as a preprocessor argument using -DDATA_TYPE_SRC=type. e.g. -DDATA_TYPE_SRC=char * @note Destination datatype should be given as a preprocessor argument using -DDATA_TYPE_DST=type. e.g. -DDATA_TYPE_DST=float * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: QSYMM8_PER_CHANNEL * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] output_ptr Pointer to the destination tensor. Supported data types: F16/F32 * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] scale Pointer to buffer with the per channel quantized scales */ __kernel void dequantization_layer_per_channel_nchw( TENSOR3D_DECLARATION(input), TENSOR3D_DECLARATION(output), __global float *scale) { // Get pixels pointer Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); #if defined(LAST_ACCESSED_X) // Check if access on width gets out of bounds // If it does shift access vector to access elements within bounds const int xi = (int)(get_global_id(0) * VEC_SIZE); input.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * input_stride_x; output.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * output_stride_x; // Load data VEC_DATA_TYPE(int, VEC_SIZE) val = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_SRC *)input.ptr), VEC_DATA_TYPE(int, VEC_SIZE)); // Create scale vectors const VEC_DATA_TYPE(float, VEC_SIZE) vscale = scale[get_global_id(2)]; // Dequantize VEC_DATA_TYPE(float, VEC_SIZE) res = vscale * CONVERT((val), VEC_DATA_TYPE(float, VEC_SIZE)); // Store result VSTORE(VEC_SIZE) (CONVERT(res, VEC_DATA_TYPE(DATA_TYPE_DST, VEC_SIZE)), 0, (__global DATA_TYPE_DST *)output.ptr); #else // !defined(LAST_ACCESSED_X) *((__global DATA_TYPE_DST *)(output.ptr)) = (DATA_TYPE_DST)((float)((int)(*((__global DATA_TYPE_SRC *)(input.ptr)))) * scale[get_global_id(2)]); #endif // defined(LAST_ACCESSED_X) } /** This performs per channel dequantization of 8-bit signed integers to floating point. (NHWC) * * @note Source datatype should be given as a preprocessor argument using -DDATA_TYPE_SRC=type. e.g. -DDATA_TYPE_SRC=char * @note Destination datatype should be given as a preprocessor argument using -DDATA_TYPE_DST=type. e.g. -DDATA_TYPE_DST=float * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: QSYMM8_PER_CHANNEL * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] output_ptr Pointer to the destination tensor. Supported data types: F16/F32 * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] scale Pointer to buffer with the per channel quantized scales */ __kernel void dequantization_layer_per_channel_nhwc( TENSOR3D_DECLARATION(input), TENSOR3D_DECLARATION(output), __global float *scale) { // Get pixels pointer Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); #if defined(LAST_ACCESSED_X) // Check if access on width gets out of bounds // If it does shift access vector to access elements within bounds const int xi = (int)(get_global_id(0) * VEC_SIZE); input.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * input_stride_x; output.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * output_stride_x; scale -= max(xi - (int)LAST_ACCESSED_X, 0); // Load data VEC_DATA_TYPE(int, VEC_SIZE) val = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE_SRC *)input.ptr), VEC_DATA_TYPE(int, VEC_SIZE)); // Create scale vectors const VEC_DATA_TYPE(float, VEC_SIZE) vscale = VLOAD(VEC_SIZE)(0, &scale[xi]); // Dequantize VEC_DATA_TYPE(float, VEC_SIZE) res = vscale * CONVERT((val), VEC_DATA_TYPE(float, VEC_SIZE)); // Store result VSTORE(VEC_SIZE) (CONVERT(res, VEC_DATA_TYPE(DATA_TYPE_DST, VEC_SIZE)), 0, (__global DATA_TYPE_DST *)output.ptr); #else // !defined(LAST_ACCESSED_X) *((__global DATA_TYPE_DST *)(output.ptr)) = (DATA_TYPE_DST)((float)((int)(*((__global DATA_TYPE_SRC *)(input.ptr)))) * scale[get_global_id(0)]); #endif // defined(LAST_ACCESSED_X) } #endif // defined(VEC_SIZE) && defined(DATA_TYPE_SRC) && defined(DATA_TYPE_DST)