/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(VEC_SIZE) #define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE) #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) #define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE) #define VEC_QUANT VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) #define CONVERT_RTE(x, type) (convert_##type##_rte((x))) #define CONVERT_DOWN(x, type) CONVERT_RTE(x, type) inline VEC_QUANT requantize(VEC_QUANT input, float in_offset, float out_offset, float in_scale, float out_scale) { const VEC_FLOAT in_f32 = (CONVERT(input, VEC_FLOAT) - (VEC_FLOAT)((float)in_offset)) * (VEC_FLOAT)((float)in_scale); const VEC_FLOAT out_f32 = in_f32 / ((VEC_FLOAT)(float)out_scale) + ((VEC_FLOAT)((float)out_offset)); const VEC_QUANT res_q8 = CONVERT_SAT(CONVERT_DOWN(out_f32, VEC_INT), VEC_QUANT); return res_q8; } #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ #if defined(DATA_TYPE) #define VEC_TYPE VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) #if defined(DEPTH) && defined(ELEMENT_SIZE) #if defined(INPUT1_WIDTH) #define SELECT_TYPE SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) #define SEQ VEC_OFFS(int, VEC_SIZE) /** This kernel concatenates two input tensors into the output tensor along the first dimension * * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16 * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16 * @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8 * * @param[in] src1_ptr Pointer to the source tensor. Supported data types: All. * @param[in] src1_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src1_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src1_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] src2_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr * @param[in] src2_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src2_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src2_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src2_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src2_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src2_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src2_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src2_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src1_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void concatenate_width_x2( TENSOR4D_DECLARATION(src1), TENSOR4D_DECLARATION(src2), TENSOR4D_DECLARATION(dst)) { // Calculate input indices const int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); const int y = get_global_id(1); const int z = get_global_id(2) % (int)DEPTH; const int w = get_global_id(2) / (int)DEPTH; const int x1 = min(x, (int)INPUT1_WIDTH - (int)VEC_SIZE); const int x2 = max(x - (int)INPUT1_WIDTH, 0); // Calculate inputs and output addresses const __global uchar *dst_addr = dst_ptr + (int)dst_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * (int)dst_stride_y + z * (int)dst_stride_z + w * (int)dst_stride_w; const __global uchar *src1_addr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * sizeof(DATA_TYPE) + y * (int)src1_stride_y + z * (int)src1_stride_z + w * (int)src1_stride_w; const __global uchar *src2_addr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * sizeof(DATA_TYPE) + y * (int)src2_stride_y + z * (int)src2_stride_z + w * (int)src2_stride_w; VEC_TYPE src1_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src1_addr); VEC_TYPE src2_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src2_addr); #if defined(OFFSET_IN1) && defined(OFFSET_IN2) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT); src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT); #endif /* defined(OFFSET_IN1) && defined(OFFSET_IN2) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) */ const VEC_INT x_coords = SEQ + (VEC_INT)(x); // Rotate src1/2_values, if values0 is a combination of src1_values and src2_values. SELECT_TYPE cond = CONVERT(((VEC_INT)x < (VEC_INT)INPUT1_WIDTH) && ((VEC_INT)x > (VEC_INT)(INPUT1_WIDTH - VEC_SIZE)), SELECT_TYPE); src1_values = select(src1_values, ROTATE(src1_values, VEC_SIZE, INPUT1_ROTATE_N), cond); src2_values = select(src2_values, ROTATE(src2_values, VEC_SIZE, INPUT1_ROTATE_N), cond); cond = CONVERT(x_coords < (VEC_INT)(INPUT1_WIDTH), SELECT_TYPE); const VEC_TYPE values0 = select(src2_values, src1_values, cond); STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0) } #if defined(INPUT2_WIDTH) && defined(INPUT3_WIDTH) /** This kernel concatenates four input tensors into the output tensor along the first dimension * * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16 * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16 * @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8 * @note Second input tensor width should be given as a preprocessor argument using -DINPUT2_WIDTH=width. e.g. -DINPUT2_WIDTH=8 * @note Third input tensor width should be given as a preprocessor argument using -DINPUT3_WIDTH=width. e.g. -DINPUT3_WIDTH=8 * * @param[in] src1_ptr Pointer to the source tensor. Supported data types: All * @param[in] src1_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src1_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src1_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] src2_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr * @param[in] src2_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src2_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src2_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src2_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src2_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src2_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src2_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src2_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] src3_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr * @param[in] src3_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src3_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src3_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src3_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src3_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src3_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src3_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src3_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src3_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] src4_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr * @param[in] src4_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src4_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src4_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src4_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src4_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src4_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src4_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src4_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src4_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src1_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void concatenate_width_x4( TENSOR4D_DECLARATION(src1), TENSOR4D_DECLARATION(src2), TENSOR4D_DECLARATION(src3), TENSOR4D_DECLARATION(src4), TENSOR4D_DECLARATION(dst)) { // Calculate input indices const int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); const int y = get_global_id(1); const int z = get_global_id(2) % (int)DEPTH; const int w = get_global_id(2) / (int)DEPTH; const int x1 = min(x, (int)INPUT1_WIDTH - (int)VEC_SIZE); const int x2 = min(max(x - (int)INPUT1_WIDTH, 0), (int)INPUT2_WIDTH - (int)VEC_SIZE); const int x3 = min(max(x - (int)INPUT1_WIDTH - (int)INPUT2_WIDTH, 0), (int)INPUT3_WIDTH - (int)VEC_SIZE); const int x4 = max(x - (int)INPUT1_WIDTH - (int)INPUT2_WIDTH - (int)INPUT3_WIDTH, 0); // Calculate inputs and output addresses const __global uchar *dst_addr = dst_ptr + (int)dst_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * (int)dst_stride_y + z * (int)dst_stride_z + w * (int)dst_stride_w; const __global uchar *src1_addr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * sizeof(DATA_TYPE) + y * (int)src1_stride_y + z * (int)src1_stride_z + w * (int)src1_stride_w; const __global uchar *src2_addr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * sizeof(DATA_TYPE) + y * (int)src2_stride_y + z * (int)src2_stride_z + w * (int)src2_stride_w; const __global uchar *src3_addr = src3_ptr + (int)src3_offset_first_element_in_bytes + x3 * sizeof(DATA_TYPE) + y * (int)src3_stride_y + z * (int)src3_stride_z + w * (int)src3_stride_w; const __global uchar *src4_addr = src4_ptr + (int)src4_offset_first_element_in_bytes + x4 * sizeof(DATA_TYPE) + y * (int)src4_stride_y + z * (int)src4_stride_z + w * (int)src4_stride_w; VEC_TYPE src1_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src1_addr); VEC_TYPE src2_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src2_addr); VEC_TYPE src3_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src3_addr); VEC_TYPE src4_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src4_addr); #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) && defined(OFFSET_IN2) && defined(SCALE_IN2) && defined(OFFSET_IN3) && defined(SCALE_IN3) && defined(OFFSET_IN4) && defined(SCALE_IN4) src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT); src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT); src3_values = requantize(src3_values, OFFSET_IN3, OFFSET_OUT, SCALE_IN3, SCALE_OUT); src4_values = requantize(src4_values, OFFSET_IN4, OFFSET_OUT, SCALE_IN4, SCALE_OUT); #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) && defined(OFFSET_IN2) && defined(SCALE_IN2) && defined(OFFSET_IN3) && defined(SCALE_IN3) && defined(OFFSET_IN4) && defined(SCALE_IN4) */ const VEC_INT x_coords = SEQ + (VEC_INT)(x); SELECT_TYPE cond_in2 = CONVERT(((VEC_INT)x < (VEC_INT)INPUT1_WIDTH && (VEC_INT)x > (VEC_INT)(INPUT1_WIDTH - VEC_SIZE)), SELECT_TYPE); SELECT_TYPE cond_in3 = CONVERT(((VEC_INT)x < (VEC_INT)(INPUT1_WIDTH + INPUT2_WIDTH) && (VEC_INT)x > (VEC_INT)(INPUT1_WIDTH + INPUT2_WIDTH - VEC_SIZE)), SELECT_TYPE); SELECT_TYPE cond_in4 = CONVERT(((VEC_INT)x < (VEC_INT)(INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH) && (VEC_INT)x > (VEC_INT)(INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH - VEC_SIZE)), SELECT_TYPE); // Rotate src1/2_values, if values0 is a combination of src1_values and src2_values. src1_values = select(src1_values, ROTATE(src1_values, VEC_SIZE, INPUT1_ROTATE_N), cond_in2); src2_values = select(src2_values, ROTATE(src2_values, VEC_SIZE, INPUT1_ROTATE_N), cond_in2); // Rotate src2/3_values, if values0 is a combination of src2_values and src3_values. src2_values = select(src2_values, ROTATE(src2_values, VEC_SIZE, INPUT2_ROTATE_N), cond_in3); src3_values = select(src3_values, ROTATE(src3_values, VEC_SIZE, INPUT2_ROTATE_N), cond_in3); // Rotate src3/4_values, if values0 is a combination of src3_values and src4_values. src3_values = select(src3_values, ROTATE(src3_values, VEC_SIZE, INPUT3_ROTATE_N), cond_in4); src4_values = select(src4_values, ROTATE(src4_values, VEC_SIZE, INPUT3_ROTATE_N), cond_in4); cond_in2 = CONVERT(x_coords < (VEC_INT)(INPUT1_WIDTH), SELECT_TYPE); cond_in3 = CONVERT(x_coords < (VEC_INT)(INPUT1_WIDTH + INPUT2_WIDTH), SELECT_TYPE); cond_in4 = CONVERT(x_coords < (VEC_INT)(INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH), SELECT_TYPE); VEC_TYPE values0 = select(src2_values, src1_values, cond_in2); values0 = select(src3_values, values0, cond_in3); values0 = select(src4_values, values0, cond_in4); STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0) } #endif /* defined(INPUT2_WIDTH) && defined(INPUT3_WIDTH) */ #endif /* defined(INPUT1_WIDTH) */ #endif /* defined(DEPTH) && defined(ELEMENT_SIZE) */ #if defined(WIDTH_OFFSET) && defined(DEPTH) && defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) /** This kernel concatenates the input tensor into the output tensor along the first dimension * * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16 * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE * @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128 * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16 * * @param[in] src_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void concatenate_width( TENSOR4D_DECLARATION(src), TENSOR4D_DECLARATION(dst)) { // Calculate input indices const int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); const int y = get_global_id(1); const int z = get_global_id(2) % (int)DEPTH; const int w = get_global_id(2) / (int)DEPTH; __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * src_stride_y + z * src_stride_z + w * src_stride_w; __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * dst_stride_y + z * dst_stride_z + w * dst_stride_w; VEC_TYPE source_values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src_addr); #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) const VEC_QUANT out0 = requantize(source_values0, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT); STORE_VECTOR_SELECT(out, DATA_TYPE, dst_addr + WIDTH_OFFSET * sizeof(DATA_TYPE), VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0) #else /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ STORE_VECTOR_SELECT(source_values, DATA_TYPE, dst_addr + WIDTH_OFFSET * sizeof(DATA_TYPE), VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0) #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ } #endif /* defined(WIDTH_OFFSET) && defined(DEPTH) && defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER)*/ #if defined(VEC_SIZE_LEFTOVER) #if defined(HEIGHT_OFFSET) && defined(DEPTH) && defined(VEC_SIZE) /** This kernel concatenates the input tensor into the output tensor along the second dimension * * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16 * @note Vector sizes supported are 2,4,8 and 16. * @note The offset for the second spatial dimension has to be passed at compile time using -DHEIGHT_OFFSET. i.e. -DHEIGHT_OFFSET=128 * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16 * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE=3. It is defined as the remainder between the input's first dimension and VEC_SIZE * * @param[in] src_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void concatenate_height( TENSOR4D_DECLARATION(src), TENSOR4D_DECLARATION(dst)) { const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0) * sizeof(DATA_TYPE); __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offs + get_global_id(1) * src_stride_y + (get_global_id(2) % DEPTH) * src_stride_z + (get_global_id( 2) / DEPTH) * src_stride_w; __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offs + get_global_id(1) * dst_stride_y + (get_global_id(2) % DEPTH) * dst_stride_z + (get_global_id( 2) / DEPTH) * dst_stride_w; VEC_TYPE source_values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src_addr); #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) const VEC_QUANT out0 = requantize(source_values0, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT); STORE_VECTOR_SELECT(out, DATA_TYPE, dst_addr + HEIGHT_OFFSET * dst_stride_y, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0) #else /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ STORE_VECTOR_SELECT(source_values, DATA_TYPE, dst_addr + HEIGHT_OFFSET * dst_stride_y, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0) #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ } #endif /* defined(HEIGHT_OFFSET) && defined(DEPTH) */ /** This kernel concatenates the input tensor into the output tensor along the third dimension * * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16 * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE=3. It is defined as the remainder between the input's first dimension and VEC_SIZE * * @param[in] src_ptr Pointer to the source tensor. Supported data types: All * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] offsets The offsets to the first valid element of the output tensor in bytes */ __kernel void concatenate( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst), int offset) { uint x_offs = max((int)(get_global_id(0) * VEC_SIZE * sizeof(DATA_TYPE) - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE * sizeof(DATA_TYPE)), 0); __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offs + get_global_id(1) * src_stride_y + get_global_id(2) * src_stride_z; __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offs + get_global_id(1) * dst_stride_y + get_global_id(2) * dst_stride_z; VEC_TYPE source_values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src_addr); #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) source_values0 = requantize(source_values0, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT); #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ STORE_VECTOR_SELECT(source_values, DATA_TYPE, dst_addr + offset, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0) } #endif /* defined(VEC_SIZE_LEFTOVER) */ #endif /* defined(DATA_TYPE) */ #endif /* defined(VEC_SIZE) */