/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) #define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE) #define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE) #define VEC_UCHAR VEC_DATA_TYPE(uchar, VEC_SIZE) #define CONVERT_RTE(x, type) (convert_##type##_rte((x))) #define CONVERT_DOWN(x, type) CONVERT_RTE(x, type) inline VEC_UCHAR requantize(VEC_UCHAR input, float in_offset, float out_offset, float in_scale, float out_scale) { const VEC_FLOAT in_f32 = (CONVERT(input, VEC_FLOAT) - (VEC_FLOAT)((float)in_offset)) * (VEC_FLOAT)((float)in_scale); const VEC_FLOAT out_f32 = in_f32 / ((VEC_FLOAT)(float)out_scale) + ((VEC_FLOAT)((float)out_offset)); const VEC_UCHAR res_u8 = CONVERT_SAT(CONVERT_DOWN(out_f32, VEC_INT), VEC_UCHAR); return res_u8; } #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ #if defined(DATA_TYPE) && defined(VEC_SIZE) #if defined(DEPTH) && defined(ELEMENT_SIZE) #if defined(INPUT1_WIDTH) #if ELEMENT_SIZE == 1 #define COND_DATA_TYPE char #elif ELEMENT_SIZE == 2 #define COND_DATA_TYPE short #elif ELEMENT_SIZE == 4 #define COND_DATA_TYPE int #else // ELEMENT_SIZE #error "Element size not supported" #endif // ELEMENT_SIZE #if VEC_SIZE == 2 #define SEQ ((int2)(0, 1)) #elif VEC_SIZE == 4 #define SEQ ((int4)(0, 1, 2, 3)) #elif VEC_SIZE == 8 #define SEQ ((int8)(0, 1, 2, 3, 4, 5, 6, 7)) #elif VEC_SIZE == 16 #define SEQ ((int16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)) #else // VEC_SIZE #error "Vector size not supported" #endif // VEC_SIZE /** This kernel concatenates two input tensors into the output tensor along the first dimension * * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16 * @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128 * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16 * @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8 * * @param[in] src1_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32 * @param[in] src1_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src1_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src1_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] src2_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr * @param[in] src2_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src2_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src2_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src2_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src2_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src2_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src2_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src2_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src1_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] src1_pad_right Right paddings of the first input tensor in unit of elements * @param[in] src1_pad_left Left paddings of the second input tensor in unit of elements */ __kernel void concatenate_width_x2( TENSOR4D_DECLARATION(src1), TENSOR4D_DECLARATION(src2), TENSOR4D_DECLARATION(dst), uint src1_pad_right, uint src2_pad_left) { Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT(dst, DEPTH); // Calculate input indices const int x = get_global_id(0) * (int)VEC_SIZE; const int y = get_global_id(1); const int z = get_global_id(2) % (int)DEPTH; const int w = get_global_id(2) / (int)DEPTH; const int x1 = min(x, (int)INPUT1_WIDTH + (int)src1_pad_right - (int)VEC_SIZE); const int x2 = max(x - (int)INPUT1_WIDTH, -(int)src2_pad_left); // Calculate inputs and output addresses const __global uchar *in1_ptr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * (int)src1_stride_x + y * (int)src1_stride_y + z * (int)src1_stride_z + w * (int)src1_stride_w; const __global uchar *in2_ptr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * (int)src2_stride_x + y * (int)src2_stride_y + z * (int)src2_stride_z + w * (int)src2_stride_w; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) src1_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in1_ptr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) src2_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in2_ptr); #if defined(OFFSET_IN1) && defined(OFFSET_IN2) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT); src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT); #endif /* defined(OFFSET_IN1) && defined(OFFSET_IN2) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) */ const VEC_DATA_TYPE(int, VEC_SIZE) x_coords = SEQ + (VEC_DATA_TYPE(int, VEC_SIZE))(x); const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE)); const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values = select(src2_values, src1_values, cond); VSTORE(VEC_SIZE) (values, 0, (__global DATA_TYPE *)dst.ptr); } #if defined(INPUT2_WIDTH) && defined(INPUT3_WIDTH) /** This kernel concatenates four input tensors into the output tensor along the first dimension * * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16 * @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128 * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16 * @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8 * @note Second input tensor width should be given as a preprocessor argument using -DINPUT2_WIDTH=width. e.g. -DINPUT2_WIDTH=8 * @note Third input tensor width should be given as a preprocessor argument using -DINPUT3_WIDTH=width. e.g. -DINPUT3_WIDTH=8 * * @param[in] src1_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32 * @param[in] src1_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src1_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src1_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] src2_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr * @param[in] src2_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src2_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src2_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src2_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src2_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src2_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src2_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src2_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] src3_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr * @param[in] src3_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src3_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src3_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src3_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src3_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src3_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src3_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src3_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src3_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] src4_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr * @param[in] src4_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src4_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src4_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src4_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src4_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src4_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src4_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src4_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src4_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src1_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] src1_pad_right Right paddings of the first input tensor in unit of elements * @param[in] src2_pad_left Left paddings of the second input tensor in unit of elements * @param[in] src2_pad_right Right paddings of the second input tensor in unit of elements * @param[in] src3_pad_left Left paddings of the third input tensor in unit of elements * @param[in] src3_pad_right Right paddings of the third input tensor in unit of elements * @param[in] src4_pad_left Left paddings of the fourth input tensor in unit of elements */ __kernel void concatenate_width_x4( TENSOR4D_DECLARATION(src1), TENSOR4D_DECLARATION(src2), TENSOR4D_DECLARATION(src3), TENSOR4D_DECLARATION(src4), TENSOR4D_DECLARATION(dst), uint src1_pad_right, uint src2_pad_left, uint src2_pad_right, uint src3_pad_left, uint src3_pad_right, uint src4_pad_left) { Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT(dst, DEPTH); // Calculate input indices const int x = get_global_id(0) * (int)VEC_SIZE; const int y = get_global_id(1); const int z = get_global_id(2) % (int)DEPTH; const int w = get_global_id(2) / (int)DEPTH; const int x1 = min(x, (int)INPUT1_WIDTH + (int)src1_pad_right - (int)VEC_SIZE); const int x2 = min(max(x - (int)INPUT1_WIDTH, -(int)src2_pad_left), (int)INPUT2_WIDTH + (int)src2_pad_right - (int)VEC_SIZE); const int x3 = min(max(x - (int)INPUT1_WIDTH - (int)INPUT2_WIDTH, -(int)src3_pad_left), (int)INPUT3_WIDTH + (int)src3_pad_right - (int)VEC_SIZE); const int x4 = max(x - (int)INPUT1_WIDTH - (int)INPUT2_WIDTH - (int)INPUT3_WIDTH, -(int)src4_pad_left); // Calculate inputs and output addresses const __global uchar *in1_ptr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * (int)src1_stride_x + y * (int)src1_stride_y + z * (int)src1_stride_z + w * (int)src1_stride_w; const __global uchar *in2_ptr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * (int)src2_stride_x + y * (int)src2_stride_y + z * (int)src2_stride_z + w * (int)src2_stride_w; const __global uchar *in3_ptr = src3_ptr + (int)src3_offset_first_element_in_bytes + x3 * (int)src3_stride_x + y * (int)src3_stride_y + z * (int)src3_stride_z + w * (int)src3_stride_w; const __global uchar *in4_ptr = src4_ptr + (int)src4_offset_first_element_in_bytes + x4 * (int)src4_stride_x + y * (int)src4_stride_y + z * (int)src4_stride_z + w * (int)src4_stride_w; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) src1_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in1_ptr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) src2_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in2_ptr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) src3_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in3_ptr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) src4_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in4_ptr); #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) && defined(OFFSET_IN2) && defined(SCALE_IN2) && defined(OFFSET_IN3) && defined(SCALE_IN3) && defined(OFFSET_IN4) && defined(SCALE_IN4) src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT); src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT); src3_values = requantize(src3_values, OFFSET_IN3, OFFSET_OUT, SCALE_IN3, SCALE_OUT); src4_values = requantize(src4_values, OFFSET_IN4, OFFSET_OUT, SCALE_IN4, SCALE_OUT); #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) && defined(OFFSET_IN2) && defined(SCALE_IN2) && defined(OFFSET_IN3) && defined(SCALE_IN3) && defined(OFFSET_IN4) && defined(SCALE_IN4) */ const VEC_DATA_TYPE(int, VEC_SIZE) x_coords = SEQ + (VEC_DATA_TYPE(int, VEC_SIZE))(x); const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond_in2 = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE)); const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond_in3 = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH + INPUT2_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE)); const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond_in4 = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE)); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values = select(src2_values, src1_values, cond_in2); values = select(src3_values, values, cond_in3); values = select(src4_values, values, cond_in4); VSTORE(VEC_SIZE) (values, 0, (__global DATA_TYPE *)dst.ptr); } #endif /* defined(INPUT2_WIDTH) && defined(INPUT3_WIDTH) */ #endif /* defined(INPUT1_WIDTH) */ #endif /* defined(DEPTH) && defined(ELEMENT_SIZE) */ #if defined(WIDTH_OFFSET) && defined(DEPTH) /** This kernel concatenates the input tensor into the output tensor along the first dimension * * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16 * @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128 * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16 * * @param[in] src_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void concatenate_width( TENSOR4D_DECLARATION(src), TENSOR4D_DECLARATION(dst)) { Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, DEPTH); Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT(dst, DEPTH); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) source_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src.ptr); #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) const VEC_UCHAR out = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT); VSTORE(VEC_SIZE) (out, 0, (__global DATA_TYPE *)(dst.ptr) + WIDTH_OFFSET); #else /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ VSTORE(VEC_SIZE) (source_values, 0, (__global DATA_TYPE *)(dst.ptr) + WIDTH_OFFSET); #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ } #endif /* defined(WIDTH_OFFSET) && defined(DEPTH) */ #if defined(HEIGHT_OFFSET) && defined(DEPTH) && defined(VEC_SIZE) /** This kernel concatenates the input tensor into the output tensor along the second dimension * * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16 * @note Vector sizes supported are 2,4,8 and 16. * @note The offset for the second spatial dimension has to be passed at compile time using -DHEIGHT_OFFSET. i.e. -DHEIGHT_OFFSET=128 * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16 * * @param[in] src_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes) * @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void concatenate_height( TENSOR4D_DECLARATION(src), TENSOR4D_DECLARATION(dst)) { Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, DEPTH); Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT(dst, DEPTH); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) source_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src.ptr); #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) const VEC_UCHAR out = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT); VSTORE(VEC_SIZE) (out, 0, (__global DATA_TYPE *)(dst.ptr + HEIGHT_OFFSET * dst_stride_y)); #else /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ VSTORE(VEC_SIZE) (source_values, 0, (__global DATA_TYPE *)(dst.ptr + HEIGHT_OFFSET * dst_stride_y)); #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ } #endif /* defined(HEIGHT_OFFSET) && defined(DEPTH) */ /** This kernel concatenates the input tensor into the output tensor along the third dimension * * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16 * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16, F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] offsets The offsets to the first valid element of the output tensor in bytes */ __kernel void concatenate( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst), int offset) { Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src); Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) source_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src.ptr); #if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) source_values = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT); #endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */ VSTORE(VEC_SIZE) (source_values, 0, (__global DATA_TYPE *)(dst.ptr + offset)); } #endif /* defined(DATA_TYPE) && defined(VEC_SIZE) */