/* * Copyright (c) 2016-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #ifdef SATURATE #define CONVERT_OP_FLOAT_STR(x, type, round) (convert_##type##_sat##round(x)) #else /* SATURATE */ #define CONVERT_OP_FLOAT_STR(x, type, round) (convert_##type##round(x)) #endif /* SATURATE */ #define CONVERT_OP_FLOAT(x, type, round) CONVERT_OP_FLOAT_STR(x, type, round) #if defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(ACC_DATA_TYPE) && defined(DATA_TYPE_OUT) #if defined(ACTIVATION_TYPE) #include "activation_float_helpers.h" #endif // defined(ACTIVATION_TYPE) #define VEC_ACC_TYPE VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE_OUT) #define VEC_OUT_TYPE VEC_DATA_TYPE(DATA_TYPE_OUT, VEC_SIZE_OUT) #define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE_OUT) /** Performs a pixelwise multiplication with float scale of either integer or float inputs. * * @attention The inputs and output data types need to be passed at compile time using -DDATA_TYPE_IN1, -DDATA_TYPE_IN2 and -DDATA_TYPE_OUT: * e.g. -DDATA_TYPE_IN1=uchar -DDATA_TYPE_IN2=ushort -DDATA_TYPE_OUT=short * @attention The data type of the intermediate result of the multiplication should passed as well using -DACC_DATA_TYPE. * e.g. If one of inputs is S16 -DACC_DATA_TYPE=int should be passed else -DACC_DATA_TYPE=short. * @attention -DDATA_TYPE_FLOAT must be passed if floating point inputs are provided. * * @param[in] in1_ptr Pointer to the source image. Supported data types: U8, S16, F16, F32 * @param[in] in1_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in1_step_x in1_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in1_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in1_step_y in1_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in1_stride_z Stride of the source image in Y dimension (in bytes) * @param[in] in1_step_z in1_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] in1_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] in2_ptr Pointer to the source image. Supported data types: U8, S16, F16, F32 * @param[in] in2_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in2_step_x in2_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in2_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in2_step_y in2_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in2_stride_z Stride of the source image in Y dimension (in bytes) * @param[in] in2_step_z in2_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] in2_offset_first_element_in_bytes The offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: U8, S16, F16, F32 * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_z out_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image * @param[in] scale Float scaling factor. Supported data types: F32 */ __kernel void pixelwise_mul_float( TENSOR3D_DECLARATION(in1), TENSOR3D_DECLARATION(in2), #if !defined(IN_PLACE) TENSOR3D_DECLARATION(out), #endif // !defined(IN_PLACE) const float scale) { // Get pixels pointer size_t x = max((int)(get_global_id(0) * VEC_SIZE_OUT - (VEC_SIZE_OUT - VEC_SIZE_LEFTOVER) % VEC_SIZE_OUT), 0); size_t y = get_global_id(1); size_t z = get_global_id(2); __global uchar *in1_addr = in1_ptr + in1_offset_first_element_in_bytes + x * in1_stride_x + y * in1_stride_y + z * in1_stride_z; __global uchar *in2_addr = in2_ptr + in2_offset_first_element_in_bytes + x * in2_stride_x + y * in2_stride_y + z * in2_stride_z; __global uchar * #if !defined(IN_PLACE) out_addr = out_ptr + out_offset_first_element_in_bytes + x * out_stride_x + y * out_stride_y + z * out_stride_z; #else // !defined(IN_PLACE) #if defined(SRC1_IN_PLACE) out_addr = in1_addr; #else //defined(SRC1_IN_PLACE) out_addr = in2_addr; #endif //defined(SRC1_IN_PLACE) #endif // !defined(IN_PLACE) // Load data VEC_ACC_TYPE in1_data = CONVERT((VEC_DATA_TYPE(DATA_TYPE_IN1, VEC_SIZE_OUT))(VLOAD(VEC_SIZE_IN1)(0, (__global DATA_TYPE_IN1 *)in1_addr)), VEC_ACC_TYPE); VEC_ACC_TYPE in2_data = CONVERT((VEC_DATA_TYPE(DATA_TYPE_IN2, VEC_SIZE_OUT))(VLOAD(VEC_SIZE_IN2)(0, (__global DATA_TYPE_IN2 *)in2_addr)), VEC_ACC_TYPE); // Perform multiplication #ifdef DATA_TYPE_FLOAT VEC_OUT_TYPE res0 = CONVERT(in1_data * in2_data * (ACC_DATA_TYPE)scale, VEC_OUT_TYPE); #else /* DATA_TYPE_FLOAT */ VEC_OUT_TYPE res0 = CONVERT_OP_FLOAT(CONVERT_OP_FLOAT((CONVERT(in1_data * in2_data, VEC_FLOAT) * scale), VEC_ACC_TYPE, ROUND), VEC_OUT_TYPE, ROUND); #endif /* DATA_TYPE_FLOAT */ #if defined(ACTIVATION_TYPE) res0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE_OUT, VEC_SIZE_OUT, res0, A_VAL, B_VAL); #endif // defined(ACTIVATION_TYPE) STORE_VECTOR_SELECT(res, DATA_TYPE_OUT, out_addr, VEC_SIZE_OUT, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0); } #endif /* defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(ACC_DATA_TYPE) && defined(DATA_TYPE_OUT) */ #if defined(DATA_TYPE) /** Performs a pixelwise multiplication of complex float values * * @param[in] in1_ptr Pointer to the source image. Supported data types: F16/F32 * @param[in] in1_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in1_step_x in1_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in1_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in1_step_y in1_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in1_stride_z Stride of the source image in Y dimension (in bytes) * @param[in] in1_step_z in1_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] in1_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] in2_ptr Pointer to the source image. Supported data types: same as @p in1_ptr * @param[in] in2_stride_x Stride of the source image in X dimension (in bytes) * @param[in] in2_step_x in2_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] in2_stride_y Stride of the source image in Y dimension (in bytes) * @param[in] in2_step_y in2_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] in2_stride_z Stride of the source image in Y dimension (in bytes) * @param[in] in2_step_z in2_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] in2_offset_first_element_in_bytes The offset of the first element in the source image * @param[out] out_ptr Pointer to the destination image. Supported data types: same as @p in1_ptr * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes) * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] out_stride_z Stride of the destination image in Y dimension (in bytes) * @param[in] out_step_z out_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image */ __kernel void pixelwise_mul_complex( TENSOR3D_DECLARATION(in1), TENSOR3D_DECLARATION(in2), TENSOR3D_DECLARATION(out)) { // Get pixels pointer Tensor3D in1 = CONVERT_TO_TENSOR3D_STRUCT(in1); Tensor3D in2 = CONVERT_TO_TENSOR3D_STRUCT(in2); Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out); // Load data VEC_DATA_TYPE(DATA_TYPE, 2) vin1 = vload2(0, (__global DATA_TYPE *)in1.ptr); VEC_DATA_TYPE(DATA_TYPE, 2) vin2 = vload2(0, (__global DATA_TYPE *)in2.ptr); // Perform complex multiplication VEC_DATA_TYPE(DATA_TYPE, 2) res = { vin1.x *vin2.x - vin1.y * vin2.y, vin1.x *vin2.y + vin2.x * vin1.y }; #if defined(ACTIVATION_TYPE) vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE_OUT, res, A_VAL, B_VAL), 0, (__global DATA_TYPE *)out.ptr); #else // defined(ACTIVATION_TYPE) // Store result vstore2(res, 0, (__global DATA_TYPE *)out.ptr); #endif // defined(ACTIVATION_TYPE) } #endif // defined(DATA_TYPE)