/* * Copyright (c) 2016-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(VEC_SIZE_X) && defined(VEC_SIZE_LEFTOVER_X) /** This kernel performs l2 normalization on x-axis * * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE_X=size. e.g. -DVEC_SIZE_X=16 * @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER_X is; x_dimension % VEC_SIZE_X. e.g. -DVEC_SIZE_LEFTOVER_X=1 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along X processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] sum_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] sum_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] sum_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] sum_step_y sum_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] epsilon Epsilon value */ __kernel void l2_normalize_x( IMAGE_DECLARATION(input), IMAGE_DECLARATION(sum), IMAGE_DECLARATION(output), DATA_TYPE epsilon) { // Offset computation const uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0); // Address computation __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y; __global uchar *sum_addr = sum_ptr + sum_offset_first_element_in_bytes + get_global_id(1) * sum_stride_y; __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * output_stride_y; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X) in = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)input_addr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X) normalize_value = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X))rsqrt(fmax(*((__global DATA_TYPE *)sum_addr), epsilon)); const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X) data0 = in * normalize_value; STORE_VECTOR_SELECT(data, DATA_TYPE, output_addr, VEC_SIZE_X, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_X != 0 && get_global_id(0) == 0); } /** This kernel performs l2 normalization on y-axis. * * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE_X=size. e.g. -DVEC_SIZE_X=16 * @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER_X is; x_dimension % VEC_SIZE_X. e.g. -DVEC_SIZE_LEFTOVER_X=1 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] sum_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] sum_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] sum_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] sum_step_y sum_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] epsilon Epsilon value */ __kernel void l2_normalize_y( IMAGE_DECLARATION(input), IMAGE_DECLARATION(sum), IMAGE_DECLARATION(output), DATA_TYPE epsilon) { // Offset computation const uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0); // Address computation __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y; __global uchar *sum_addr = sum_ptr + sum_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE); __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * output_stride_y; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X) in = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)input_addr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X) sums = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)sum_addr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X) normalize_value = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X))rsqrt(fmax(sums, epsilon)); const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X) data0 = in * normalize_value; STORE_VECTOR_SELECT(data, DATA_TYPE, output_addr, VEC_SIZE_X, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_X != 0 && get_global_id(0) == 0); } /** This kernel performs l2 normalization on z-axis. * * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE_X=size. e.g. -DVEC_SIZE_X=16 * @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER_X is; x_dimension % VEC_SIZE_X. e.g. -DVEC_SIZE_LEFTOVER_X=1 * * @param[in] input_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] input_step_x input_stride_x * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] sum_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] sum_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] sum_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] sum_step_y sum_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] sum_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] epsilon Epsilon value */ __kernel void l2_normalize_z( TENSOR3D_DECLARATION(input), TENSOR3D_DECLARATION(sum), TENSOR3D_DECLARATION(output), DATA_TYPE epsilon) { // Offset computation const uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0); // Address computation __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y + get_global_id(2) * input_stride_z; __global uchar *sum_addr = sum_ptr + sum_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * sum_stride_y; __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * output_stride_y + get_global_id(2) * output_stride_z; VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X) in = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)input_addr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X) sums = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)sum_addr); VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X) data0 = in * ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X))(rsqrt(fmax(sums, epsilon)))); STORE_VECTOR_SELECT(data, DATA_TYPE, output_addr, VEC_SIZE_X, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_X != 0 && get_global_id(0) == 0); } #endif // defined(VEC_SIZE_X) && defined(VEC_SIZE_LEFTOVER_X)