/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "fp_post_ops_act_eltwise_op_act.h" #include "gemm_helpers.h" #include "repeat.h" /** (EXPERIMENTAL_POST_OPS) gemm_mm_reshaped kernel */ #if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N) #if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH) #if defined(MIXED_PRECISION) #if K0 == 2 #define ARM_DOT_K0(a, b, c) \ ({ \ c += a.s0 * b.s0; \ c += a.s1 * b.s1; \ }) #elif K0 == 3 // K0 == 3 #define ARM_DOT_K0(a, b, c) \ ({ \ c += a.s0 * b.s0; \ c += a.s1 * b.s1; \ c += a.s2 * b.s2; \ }) #elif K0 == 4 // K0 == 4 #define ARM_DOT_K0(a, b, c) \ ({ \ c += a.s0 * b.s0; \ c += a.s1 * b.s1; \ c += a.s2 * b.s2; \ c += a.s3 * b.s3; \ }) #elif K0 == 8 // K0 == 8 #define ARM_DOT_K0(a, b, c) \ ({ \ c += a.s0 * b.s0; \ c += a.s1 * b.s1; \ c += a.s2 * b.s2; \ c += a.s3 * b.s3; \ c += a.s4 * b.s4; \ c += a.s5 * b.s5; \ c += a.s6 * b.s6; \ c += a.s7 * b.s7; \ }) #elif K0 == 16 // K0 == 16 #define ARM_DOT_K0(a, b, c) \ ({ \ c += a.s0 * b.s0; \ c += a.s1 * b.s1; \ c += a.s2 * b.s2; \ c += a.s3 * b.s3; \ c += a.s4 * b.s4; \ c += a.s5 * b.s5; \ c += a.s6 * b.s6; \ c += a.s7 * b.s7; \ c += a.s8 * b.s8; \ c += a.s9 * b.s9; \ c += a.sA * b.sA; \ c += a.sB * b.sB; \ c += a.sC * b.sC; \ c += a.sD * b.sD; \ c += a.sE * b.sE; \ c += a.sF * b.sF; \ }) #else // K0 not supported #error "K0 value not supported" #endif // K0 conditions #else // defined(MIXED_PRECISION) #if K0 == 2 #define ARM_DOT_K0(a, b, c) \ ({ \ c = fma(a.s0, b.s0, c); \ c = fma(a.s1, b.s1, c); \ }) #elif K0 == 3 // K0 == 3 #define ARM_DOT_K0(a, b, c) \ ({ \ c = fma(a.s0, b.s0, c); \ c = fma(a.s1, b.s1, c); \ c = fma(a.s2, b.s2, c); \ }) #elif K0 == 4 // K0 == 4 #define ARM_DOT_K0(a, b, c) \ ({ \ c = fma(a.s0, b.s0, c); \ c = fma(a.s1, b.s1, c); \ c = fma(a.s2, b.s2, c); \ c = fma(a.s3, b.s3, c); \ }) #elif K0 == 8 // K0 == 8 #define ARM_DOT_K0(a, b, c) \ ({ \ c = fma(a.s0, b.s0, c); \ c = fma(a.s1, b.s1, c); \ c = fma(a.s2, b.s2, c); \ c = fma(a.s3, b.s3, c); \ c = fma(a.s4, b.s4, c); \ c = fma(a.s5, b.s5, c); \ c = fma(a.s6, b.s6, c); \ c = fma(a.s7, b.s7, c); \ }) #elif K0 == 16 // K0 == 16 #define ARM_DOT_K0(a, b, c) \ ({ \ c = fma(a.s0, b.s0, c); \ c = fma(a.s1, b.s1, c); \ c = fma(a.s2, b.s2, c); \ c = fma(a.s3, b.s3, c); \ c = fma(a.s4, b.s4, c); \ c = fma(a.s5, b.s5, c); \ c = fma(a.s6, b.s6, c); \ c = fma(a.s7, b.s7, c); \ c = fma(a.s8, b.s8, c); \ c = fma(a.s9, b.s9, c); \ c = fma(a.sA, b.sA, c); \ c = fma(a.sB, b.sB, c); \ c = fma(a.sC, b.sC, c); \ c = fma(a.sD, b.sD, c); \ c = fma(a.sE, b.sE, c); \ c = fma(a.sF, b.sF, c); \ }) #else // K0 not supported #error "K0 value not supported" #endif // K0 conditions #endif // defined(MIXED_PRECISION) #if defined(ARM_DOT_K0XN0) #undef ARM_DOT_K0XN0 #endif // defined(ARM_DOT_K0XN0) #if N0 == 2 #define ARM_DOT_K0XN0(a, b, c) \ ({ \ ARM_DOT_K0((a), (b##0), (c.s0)); \ ARM_DOT_K0((a), (b##1), (c.s1)); \ }) #elif N0 == 3 // N0 == 3 #define ARM_DOT_K0XN0(a, b, c) \ ({ \ ARM_DOT_K0((a), (b##0), (c.s0)); \ ARM_DOT_K0((a), (b##1), (c.s1)); \ ARM_DOT_K0((a), (b##2), (c.s2)); \ }) #elif N0 == 4 // N0 == 4 #define ARM_DOT_K0XN0(a, b, c) \ ({ \ ARM_DOT_K0((a), (b##0), (c.s0)); \ ARM_DOT_K0((a), (b##1), (c.s1)); \ ARM_DOT_K0((a), (b##2), (c.s2)); \ ARM_DOT_K0((a), (b##3), (c.s3)); \ }) #elif N0 == 8 // N0 == 8 #define ARM_DOT_K0XN0(a, b, c) \ ({ \ ARM_DOT_K0((a), (b##0), (c.s0)); \ ARM_DOT_K0((a), (b##1), (c.s1)); \ ARM_DOT_K0((a), (b##2), (c.s2)); \ ARM_DOT_K0((a), (b##3), (c.s3)); \ ARM_DOT_K0((a), (b##4), (c.s4)); \ ARM_DOT_K0((a), (b##5), (c.s5)); \ ARM_DOT_K0((a), (b##6), (c.s6)); \ ARM_DOT_K0((a), (b##7), (c.s7)); \ }) #elif N0 == 16 // N0 == 16 #define ARM_DOT_K0XN0(a, b, c) \ ({ \ ARM_DOT_K0((a), (b##0), (c.s0)); \ ARM_DOT_K0((a), (b##1), (c.s1)); \ ARM_DOT_K0((a), (b##2), (c.s2)); \ ARM_DOT_K0((a), (b##3), (c.s3)); \ ARM_DOT_K0((a), (b##4), (c.s4)); \ ARM_DOT_K0((a), (b##5), (c.s5)); \ ARM_DOT_K0((a), (b##6), (c.s6)); \ ARM_DOT_K0((a), (b##7), (c.s7)); \ ARM_DOT_K0((a), (b##8), (c.s8)); \ ARM_DOT_K0((a), (b##9), (c.s9)); \ ARM_DOT_K0((a), (b##A), (c.sA)); \ ARM_DOT_K0((a), (b##B), (c.sB)); \ ARM_DOT_K0((a), (b##C), (c.sC)); \ ARM_DOT_K0((a), (b##D), (c.sD)); \ ARM_DOT_K0((a), (b##E), (c.sE)); \ ARM_DOT_K0((a), (b##F), (c.sF)); \ }) #else // N0 not supported #error "N0 value not supported" #endif // N0 conditions /** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops: * Post op 1: activation (optional) * Post op 2: elementwise op * Post op 3: activation (optional) * * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 * * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_nt_rhs_t, with these additions: * * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) */ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), IMAGE_DECLARATION(rhs), #if defined(BETA) IMAGE_DECLARATION(bias), #endif // defined(BETA) IMAGE_DECLARATION(dst), // Post-Op arguments IMAGE_DECLARATION(eltwise_operand), uint k, uint lhs_stride_z, uint rhs_stride_z, #if defined(BETA) uint bias_stride_z, #endif //defined(BETA) uint dst_stride_z, uint eltwise_operand_stride_z #if defined(REINTERPRET_OUTPUT_AS_3D) , uint dst_cross_plane_pad #endif // REINTERPRET_OUTPUT_AS_3D ) { // Block size #define LHS_BLOCK_SIZE ((K0) * (M0)) #if defined(LHS_INTERLEAVE) #define LHS_OFFSET_X (K0) #define LHS_STEP_X ((K0) * (V0)) #define LHS_STEP_LOOP (1) #else // defined(INTERLEAVE) #define LHS_OFFSET_X (LHS_BLOCK_SIZE) #define LHS_STEP_X (K0) #define LHS_STEP_LOOP (V0) #endif // defined(INTERLEAVE) // Block size #define RHS_BLOCK_SIZE ((K0) * (N0)) // RHS offset and step X #if defined(RHS_INTERLEAVE) #define RHS_OFFSET_X (K0) #define RHS_STEP_X ((K0) * (H0)) #define RHS_STEP_LOOP (1) #else // defined(RHS_INTERLEAVE) #define RHS_OFFSET_X (RHS_BLOCK_SIZE) #define RHS_STEP_X (K0) #define RHS_STEP_LOOP (H0) #endif // defined(RHS_INTERLEAVE) #if defined(DUMMY_WORK_ITEMS) if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M)) { return; } #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y + (get_global_id(2) * lhs_stride_z); // Compute RHS matrix address __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (get_global_id(0) % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(0) / (uint)H0) * rhs_stride_y; #if defined(MATRIX_B_DEPTH) // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 rhs_addr += (get_global_id(2) % MATRIX_B_DEPTH) * rhs_stride_z; #else // defined(MATRIX_B_DEPTH) rhs_addr += get_global_id(2) * rhs_stride_z; #endif // defined(MATRIX_B_DEPTH) // Initialize the accumulators REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0); REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0; REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); for(int i = 0; i < k; i += K0) { // Supported cases (M0, K0): // 1,2 - 1,3 - 1,4 - 1,8 - 1,16 // 2,2 - 2,3 - 2,4 - 2,8 - 2,16 // 3,2 - 3,3 - 3,4 - 3,8 - 3,16 // 4,2 - 4,3 - 4,4 - 4,8 - 4,16 // 5,2 - 5,3 - 5,4 - 5,8 - 5,16 // 6,2 - 6,3 - 6,4 - 6,8 - 6,16 // 7,2 - 7,3 - 7,4 - 7,8 - 7,16 // 8,2 - 8,3 - 8,4 - 8,8 - 8,16 // Load values from LHS matrix LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs); // Load values from RHS matrix LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_addr, 0, RHS_STEP_X * sizeof(DATA_TYPE), zero); // Accumulate ARM_DOT_K0XN0(a0, b, c0); #if M0 > 1 ARM_DOT_K0XN0(a1, b, c1); #endif // M0 > 1 #if M0 > 2 ARM_DOT_K0XN0(a2, b, c2); #endif // M0 > 2 #if M0 > 3 ARM_DOT_K0XN0(a3, b, c3); #endif // M0 > 3 #if M0 > 4 ARM_DOT_K0XN0(a4, b, c4); #endif // M0 > 4 #if M0 > 5 ARM_DOT_K0XN0(a5, b, c5); #endif // M0 > 5 #if M0 > 6 ARM_DOT_K0XN0(a6, b, c6); #endif // M0 > 6 #if M0 > 7 ARM_DOT_K0XN0(a7, b, c7); #endif // M0 > 7 lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE); rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE); } __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1) * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D; #else // defined(REINTERPRET_OUTPUT_AS_3D) // Add offset for batched GEMM dst_addr += get_global_id(2) * dst_stride_z; #endif // defined(REINTERPRET_OUTPUT_AS_3D) // Multiply by the weight of matrix-matrix product and store the result #if defined(ALPHA) SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); #endif // defined(ALPHA) // Add beta*bias #if defined(BETA) #if defined(BROADCAST_BIAS) __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); #ifndef UNIT_BETA SCALE_BLOCK(1, DATA_TYPE, bias, BETA); #endif // UNIT_BIAS // c = c + bias[broadcasted] MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); #else // defined(BROADCAST_BIAS) __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id( 2) * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); #ifndef UNIT_BETA SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); #endif // UNIT_BIAS // c = c + bias MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); #endif // defined(BROADCAST_BIAS) #endif // defined(BETA) // c = act(c) POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); // c = act(c) POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); // Store output block MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp); #undef LHS_BLOCK_SIZE #undef LHS_OFFSET_X #undef LHS_STEP_X #undef RHS_BLOCK_SIZE #undef RHS_OFFSET_X #undef RHS_STEP_X #undef LHS_STEP_LOOP #undef RHS_STEP_LOOP } #if defined(OPENCL_IMAGE_SUPPORT) /** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object. * Post op 1: activation (optional) * Post op 2: elementwise op * Post op 3: activation (optional) * * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 * * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_nt_rhs_t_texture, with these additions: * * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) */ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), __read_only image2d_t rhs_img, #if defined(BETA) IMAGE_DECLARATION(bias), #endif // defined(BETA) IMAGE_DECLARATION(dst), // Post-Op arguments IMAGE_DECLARATION(eltwise_operand), uint k, uint lhs_stride_z, uint rhs_stride_z, #if defined(BETA) uint bias_stride_z, #endif //defined(BETA) uint dst_stride_z, uint eltwise_operand_stride_z #if defined(REINTERPRET_OUTPUT_AS_3D) , uint dst_cross_plane_pad #endif // REINTERPRET_OUTPUT_AS_3D ) { // Pixel unit #define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0) // Block size #define LHS_BLOCK_SIZE ((K0) * (M0)) #if defined(LHS_INTERLEAVE) #define LHS_OFFSET_X (K0) #define LHS_STEP_X ((K0) * (V0)) #define LHS_STEP_LOOP (1) #else // defined(INTERLEAVE) #define LHS_OFFSET_X (LHS_BLOCK_SIZE) #define LHS_STEP_X (K0) #define LHS_STEP_LOOP (V0) #endif // defined(INTERLEAVE) // Block size #define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0)) // RHS offset and step X #if defined(RHS_INTERLEAVE) #define RHS_OFFSET_X (PIXEL_UNIT) #define RHS_STEP_X (PIXEL_UNIT * (H0)) #define RHS_STEP_LOOP (1) #else // defined(RHS_INTERLEAVE) #define RHS_OFFSET_X (RHS_BLOCK_SIZE) #define RHS_STEP_X PIXEL_UNIT #define RHS_STEP_LOOP (H0) #endif // defined(RHS_INTERLEAVE) #if defined(DUMMY_WORK_ITEMS) if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M)) { return; } #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y + (get_global_id(2) * lhs_stride_z); #if defined(MATRIX_B_DEPTH) // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH); #else // defined(MATRIX_B_DEPTH) const uint z_rhs = get_global_id(2); #endif // defined(MATRIX_B_DEPTH) // Compute RHS matrix coordinates uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X; const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT; // Initialize the accumulators REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0); REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0; REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); for(int i = 0; i < K; i += K0) { // Load values from LHS matrix LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs); // Load values from RHS matrix stored in a cl_image REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0); LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0); // Accumulate ARM_DOT_K0XN0(a0, b, c0); #if M0 > 1 ARM_DOT_K0XN0(a1, b, c1); #endif // M0 > 1 #if M0 > 2 ARM_DOT_K0XN0(a2, b, c2); #endif // M0 > 2 #if M0 > 3 ARM_DOT_K0XN0(a3, b, c3); #endif // M0 > 3 #if M0 > 4 ARM_DOT_K0XN0(a4, b, c4); #endif // M0 > 4 #if M0 > 5 ARM_DOT_K0XN0(a5, b, c5); #endif // M0 > 5 #if M0 > 6 ARM_DOT_K0XN0(a6, b, c6); #endif // M0 > 6 #if M0 > 7 ARM_DOT_K0XN0(a7, b, c7); #endif // M0 > 7 lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE); x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP; } __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1) * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D; #else // defined(REINTERPRET_OUTPUT_AS_3D) // Add offset for batched GEMM dst_addr += get_global_id(2) * dst_stride_z; #endif // defined(REINTERPRET_OUTPUT_AS_3D) // Multiply by the weight of matrix-matrix product and store the result #if defined(ALPHA) SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); #endif // defined(ALPHA) // Add beta*bias #if defined(BETA) #if defined(BROADCAST_BIAS) __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); #ifndef UNIT_BETA SCALE_BLOCK(1, DATA_TYPE, bias, BETA); #endif // UNIT_BIAS // c = c + bias[broadcasted] MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); #else // defined(BROADCAST_BIAS) __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id( 2) * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); #ifndef UNIT_BETA SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); #endif // UNIT_BIAS // c = c + bias MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); #endif // defined(BROADCAST_BIAS) #endif // defined(BETA) // c = act(c) POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); // c = act(c) POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); // Store output block MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp); #undef LHS_BLOCK_SIZE #undef LHS_OFFSET_X #undef LHS_STEP_X #undef RHS_BLOCK_SIZE #undef RHS_OFFSET_X #undef RHS_STEP_X #undef PIXEL_UNIT #undef LHS_STEP_LOOP #undef RHS_STEP_LOOP } #endif // defined(OPENCL_IMAGE_SUPPORT) #if defined(LHS_TRANSPOSE) #define VTYPE(TYPE, SIZE) VEC_DATA_TYPE(TYPE, SIZE) #if defined(MIXED_PRECISION) #if(GPU_ARCH == GPU_ARCH_MIDGARD) #define ARM_VFMA(N0, a, b, c) c += (CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))) * (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))); #else // GPU_ARCH == GPU_ARCH_MIDGARD #define ARM_VFMA(N0, a, b, c) c = fma((CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (c)); #endif // GPU_ARCH == GPU_ARCH_MIDGARD #else // defined(MIXED_PRECISION #if(GPU_ARCH == GPU_ARCH_MIDGARD) #define ARM_VFMA(N0, a, b, c) c += (a) * (b); #else // GPU_ARCH == GPU_ARCH_MIDGARD #define ARM_VFMA(N0, a, b, c) c = fma((a), (b), (c)); #endif // GPU_ARCH == GPU_ARCH_MIDGARD #endif // defined(MIXED_PRECISION) #define ARM_VVM_T_NT_1xN0x1(N0, TYPE, a, b, C) \ ({ \ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a), b, (C##0)); \ }) #define ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C) \ ({ \ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s0), b, (C##0)); \ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s1), b, (C##1)); \ }) #define ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C) \ ({ \ ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C); \ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s2), b, (C##2)); \ }) #define ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C) \ ({ \ ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C); \ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s3), b, (C##3)); \ }) #define ARM_VVM_T_NT_8xN0x1(N0, TYPE, a, b, C) \ ({ \ ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C); \ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s4), b, (C##4)); \ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s5), b, (C##5)); \ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s6), b, (C##6)); \ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s7), b, (C##7)); \ }) // Factory macro for the column-vector (transposed) by row-vector (not transposed) multiplication. K0 = 1 // a is the column-vector (transposed) // b is the row-vector (not transposed) // C is the output matrix // Lower case is a vector (a, b) // Upper case is a matrix (C) #define ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, a, b, C) ARM_VVM_T_NT_##M0##xN0x1(N0, TYPE, a, b, C) #define ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C) \ ({ \ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##0), (B##0), C); \ }) #define ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C) \ ({ \ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C); \ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##1), (B##1), C); \ }) #define ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C) \ ({ \ ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C); \ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##2), (B##2), C); \ }) #define ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C) \ ({ \ ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C); \ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##3), (B##3), C); \ }) #define ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C) \ ({ \ ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C); \ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##4), (B##4), C); \ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##5), (B##5), C); \ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##6), (B##6), C); \ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##7), (B##7), C); \ }) #define ARM_MM_T_NT_M0xN0x16(M0, N0, TYPE, A, B, C) \ ({ \ ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C); \ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##8), (B##8), C); \ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##9), (B##9), C); \ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##A), (B##A), C); \ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##B), (B##B), C); \ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##C), (B##C), C); \ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##D), (B##D), C); \ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##E), (B##E), C); \ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##F), (B##F), C); \ }) // Factory macro for the matrix (transposed) by matrix (not transposed) multiplication. // The dimensions for this matrix multiplications are defined through M0, N0 and K0 // The dimensions supported are: // M0: 1, 2, 3, 4, 8 // N0: 1, 2, 3, 4, 8, 16 // K0: 1, 2, 3, 4, 8, 16 // This macro calls the vector-by-matrix macro K0 times // A, B and C are matrices #define ARM_MM_T_NT(M0, N0, K0, TYPE, A, B, C) \ CONCAT(ARM_MM_T_NT_M0xN0x, K0) \ (M0, N0, TYPE, A, B, C) /** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops: * Post op 1: activation (optional) * Post op 2: elementwise op * Post op 3: activation (optional) * * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 * * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_t_rhs_nt, with these additions: * * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) */ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), IMAGE_DECLARATION(rhs), #if defined(BETA) IMAGE_DECLARATION(bias), #endif // defined(BETA) IMAGE_DECLARATION(dst), // Post-Op arguments IMAGE_DECLARATION(eltwise_operand), uint k, uint lhs_stride_z, uint rhs_stride_z, #if defined(BETA) uint bias_stride_z, #endif //defined(BETA) uint dst_stride_z, uint eltwise_operand_stride_z #if defined(REINTERPRET_OUTPUT_AS_3D) , uint dst_cross_plane_pad #endif // REINTERPRET_OUTPUT_AS_3D ) { // Block size #define LHS_BLOCK_SIZE ((K0) * (M0)) #if defined(LHS_INTERLEAVE) #define LHS_OFFSET_X (M0) #define LHS_STEP_X ((M0) * (V0)) #define LHS_STEP_LOOP (1) #else // defined(INTERLEAVE) #define LHS_OFFSET_X (LHS_BLOCK_SIZE) #define LHS_STEP_X (M0) #define LHS_STEP_LOOP (V0) #endif // defined(INTERLEAVE) // Block size #define RHS_BLOCK_SIZE ((K0) * (N0)) // RHS offset and step X #if defined(RHS_INTERLEAVE) #define RHS_OFFSET_X (N0) #define RHS_STEP_X ((N0) * (H0)) #else // defined(RHS_INTERLEAVE) #define RHS_OFFSET_X (RHS_BLOCK_SIZE) #define RHS_STEP_X (N0) #endif // defined(RHS_INTERLEAVE) const uint x = get_global_id(0); const uint y = get_global_id(1); const uint z = get_global_id(2); const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); #if defined(DUMMY_WORK_ITEMS) if((x * N0 >= N) || (y * M0 >= M)) { return; } #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z); // Compute RHS matrix address __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y; #if defined(MATRIX_B_DEPTH) // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 rhs_addr += (z % MATRIX_B_DEPTH) * rhs_stride_z; #else // defined(MATRIX_B_DEPTH) rhs_addr += z * rhs_stride_z; #endif // defined(MATRIX_B_DEPTH) // Initialize the accumulators REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0); REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0); __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr); __global DATA_TYPE *rhs = (__global DATA_TYPE *)(rhs_addr); for(int i = 0; i < k; i += K0) { VEC_DATA_TYPE(DATA_TYPE, M0) a0; VEC_DATA_TYPE(DATA_TYPE, N0) b0; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; #if K0 > 1 a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; #endif // K0 > 1 #if K0 > 2 a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; #endif // K0 > 2 #if K0 > 3 a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; #endif // K0 > 3 #if K0 > 4 a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; #endif // K0 > 4 #if K0 > 8 a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = VLOAD(N0)(0, rhs); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; rhs += RHS_STEP_X; #endif // K0 > 8 #ifndef LHS_INTERLEAVE lhs += (M0 * K0 * (V0 - 1)); #endif // LHS_INTERLEAVE #ifndef RHS_INTERLEAVE rhs += (N0 * K0 * (H0 - 1)); #endif // RHS_INTERLEAVE } __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D CALCULATE_Z_OFFSET(M0, uint, zout, y * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D dst_addr += z * dst_stride_z * DEPTH_GEMM3D; #else // defined(REINTERPRET_OUTPUT_AS_3D) // Add offset for batched GEMM dst_addr += z * dst_stride_z; #endif // defined(REINTERPRET_OUTPUT_AS_3D) // Multiply by the weight of matrix-matrix product and store the result #if defined(ALPHA) SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); #endif // defined(ALPHA) // Add beta*bias #if defined(BETA) #if defined(BROADCAST_BIAS) __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)); LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); #ifndef UNIT_BETA SCALE_BLOCK(1, DATA_TYPE, bias, BETA); #endif // UNIT_BIAS // c = c + bias[broadcasted] MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); #else // defined(BROADCAST_BIAS) __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id( 2) * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); #ifndef UNIT_BETA SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); #endif // UNIT_BIAS // c = c + bias MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); #endif // defined(BROADCAST_BIAS) #endif // defined(BETA) // c = act(c) POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); // c = act(c) POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); // Store output block MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp); #undef LHS_BLOCK_SIZE #undef LHS_OFFSET_X #undef LHS_STEP_X #undef RHS_BLOCK_SIZE #undef RHS_OFFSET_X #undef RHS_STEP_X } #if defined(OPENCL_IMAGE_SUPPORT) /** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object. * Post op 1: activation (optional) * Post op 2: elementwise op * Post op 3: activation (optional) * * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 * * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_t_rhs_nt_texture, with these additions: * * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) */ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), __read_only image2d_t rhs_img, #if defined(BETA) IMAGE_DECLARATION(bias), #endif // defined(BETA) IMAGE_DECLARATION(dst), // Post-Op arguments IMAGE_DECLARATION(eltwise_operand), uint k, uint lhs_stride_z, uint rhs_stride_z, #if defined(BETA) uint bias_stride_z, #endif //defined(BETA) uint dst_stride_z, uint eltwise_operand_stride_z #if defined(REINTERPRET_OUTPUT_AS_3D) , uint dst_cross_plane_pad #endif // REINTERPRET_OUTPUT_AS_3D ) { // Pixel unit #define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0) // Block size #define LHS_BLOCK_SIZE ((K0) * (M0)) #if defined(LHS_INTERLEAVE) #define LHS_OFFSET_X (M0) #define LHS_STEP_X ((M0) * (V0)) #define LHS_STEP_LOOP (1) #else // defined(INTERLEAVE) #define LHS_OFFSET_X (LHS_BLOCK_SIZE) #define LHS_STEP_X (M0) #define LHS_STEP_LOOP (V0) #endif // defined(INTERLEAVE) // Block size #define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT)) // RHS offset and step X #if defined(RHS_INTERLEAVE) #define RHS_OFFSET_X (PIXEL_UNIT) #define RHS_STEP_X ((PIXEL_UNIT) * (H0)) #else // defined(RHS_INTERLEAVE) #define RHS_OFFSET_X (RHS_BLOCK_SIZE) #define RHS_STEP_X (PIXEL_UNIT) #endif // defined(RHS_INTERLEAVE) const uint x = get_global_id(0); const uint y = get_global_id(1); const uint z = get_global_id(2); #if defined(DUMMY_WORK_ITEMS) if((x * N0 >= N) || (y * M0 >= M)) { return; } #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z); #if defined(MATRIX_B_DEPTH) // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 const uint z_rhs = (z % MATRIX_B_DEPTH); #else // defined(MATRIX_B_DEPTH) const uint z_rhs = z; #endif // defined(MATRIX_B_DEPTH) // Compute RHS matrix coordinates uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X; const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT; // Initialize the accumulators REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0); REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0); __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr); for(int i = 0; i < K; i += K0) { VEC_DATA_TYPE(DATA_TYPE, M0) a0; VEC_DATA_TYPE(DATA_TYPE, N0) b0; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; #if K0 > 1 a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; #endif // K0 > 1 #if K0 > 2 a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; #endif // K0 > 2 #if K0 > 3 a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; #endif // K0 > 3 #if K0 > 4 a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; #endif // K0 > 4 #if K0 > 8 a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; a0 = VLOAD(M0)(0, lhs); b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs)); ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c); lhs += LHS_STEP_X; #endif // K0 > 8 #ifndef LHS_INTERLEAVE lhs += (M0 * K0 * (V0 - 1)); #endif // LHS_INTERLEAVE x_rhs += K0 * RHS_STEP_X; #ifndef RHS_INTERLEAVE x_rhs += (PIXEL_UNIT * K0 * (H0 - 1)); #endif // RHS_INTERLEAVE } __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D CALCULATE_Z_OFFSET(M0, uint, zout, y * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D dst_addr += z * dst_stride_z * DEPTH_GEMM3D; #else // defined(REINTERPRET_OUTPUT_AS_3D) // Add offset for batched GEMM dst_addr += z * dst_stride_z; #endif // defined(REINTERPRET_OUTPUT_AS_3D) // Multiply by the weight of matrix-matrix product and store the result #if defined(ALPHA) SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); #endif // defined(ALPHA) // Add beta*bias #if defined(BETA) #if defined(BROADCAST_BIAS) __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)); LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); #ifndef UNIT_BETA SCALE_BLOCK(1, DATA_TYPE, bias, BETA); #endif // UNIT_BIAS // c = c + bias[broadcasted] MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); #else // defined(BROADCAST_BIAS) __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * bias_stride_y) + z * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); #ifndef UNIT_BETA SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); #endif // UNIT_BIAS MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp); #endif // defined(BROADCAST_BIAS) #endif // defined(BETA) // c = act(c) POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); // c = act(c) POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); // Store output block MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp); #undef LHS_BLOCK_SIZE #undef LHS_OFFSET_X #undef LHS_STEP_X #undef RHS_BLOCK_SIZE #undef RHS_OFFSET_X #undef RHS_STEP_X #undef PIXEL_UNIT #undef LHS_STEP_LOOP #undef RHS_STEP_LOOP } #endif // defined(OPENCL_IMAGE_SUPPORT) #endif // defined(LHS_TRANSPOSE) #endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH) #endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)