/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "helpers.h" #if defined(DATA_TYPE) && defined(WIDTH_OUTPUT) && defined(ELEMENT_SIZE) && defined(WIDTH_INPUT) && defined(NUM_GROUPS) #if ELEMENT_SIZE == 1 #define COND_DATA_TYPE char #elif ELEMENT_SIZE == 2 #define COND_DATA_TYPE short #elif ELEMENT_SIZE == 4 #define COND_DATA_TYPE int #else // ELEMENT_SIZE #error "Element size not support" #endif // ELEMENT_SIZE /** This kernel performs a reshaping of the output of the convolution layer * * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float * @note The width of the input tensor must be passed at compile time using -DWIDTH_INPUT: e.g. -DWIDTH_INPUT=320 * @note The width of the output tensor must be passed at compile time using -DWIDTH_OUTPUT: e.g. -DWIDTH_OUTPUT=600 * @note The element size must be passed at compile time using -DELEMENT_SIZE: e.g. -DELEMENT_SIZE=4 * @note The number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4 * * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/F16/F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes) * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ __kernel void col2im( TENSOR3D_DECLARATION(src), TENSOR4D_DECLARATION(dst)) { Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src); Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(dst, 0); const uint xd = get_global_id(1) % WIDTH_OUTPUT; // x coordinate of the destination tensor const uint yd = get_global_id(1) / WIDTH_OUTPUT; // y coordinate of the destination tensor VEC_DATA_TYPE(DATA_TYPE, 8) data = vload8(0, (__global DATA_TYPE *)src.ptr); uint x = get_global_id(0) * 8; uint8 x_clamped = x + (uint8)(0, 1, 2, 3, 4, 5, 6, 7); VEC_DATA_TYPE(COND_DATA_TYPE, 8) cond0 = CONVERT((x_clamped < WIDTH_INPUT), VEC_DATA_TYPE(COND_DATA_TYPE, 8)); // Clamp x if out-of-bounds x_clamped = select((uint8)x, x_clamped, convert_int8(cond0)); // If out-of-bound, overwrite with the first element data = select((VEC_DATA_TYPE(DATA_TYPE, 8))data.s0, data, cond0); #if NUM_GROUPS > 1 // Compute output offset (batches on 4th dimension) int idx = yd * dst_stride_y + xd * dst_stride_x + (get_global_id(2) / NUM_GROUPS) * dst.stride_w; const uint group = get_global_id(2) % NUM_GROUPS; // group ID x_clamped += group * WIDTH_INPUT; #else /* defined(NUM_GROUPS > 1 ) */ // Compute output offset (batches on 3rd dimension) int idx = yd * dst.stride_y + xd * dst.stride_x + get_global_id(2) * dst.stride_w; #endif /* NUM_GROUPS > 1 */ // Store value *((__global DATA_TYPE *)(dst.ptr + idx + x_clamped.s0 * dst.stride_z)) = data.s0; *((__global DATA_TYPE *)(dst.ptr + idx + x_clamped.s1 * dst.stride_z)) = data.s1; *((__global DATA_TYPE *)(dst.ptr + idx + x_clamped.s2 * dst.stride_z)) = data.s2; *((__global DATA_TYPE *)(dst.ptr + idx + x_clamped.s3 * dst.stride_z)) = data.s3; *((__global DATA_TYPE *)(dst.ptr + idx + x_clamped.s4 * dst.stride_z)) = data.s4; *((__global DATA_TYPE *)(dst.ptr + idx + x_clamped.s5 * dst.stride_z)) = data.s5; *((__global DATA_TYPE *)(dst.ptr + idx + x_clamped.s6 * dst.stride_z)) = data.s6; *((__global DATA_TYPE *)(dst.ptr + idx + x_clamped.s7 * dst.stride_z)) = data.s7; } #endif // defined(DATA_TYPE) && defined(WIDTH_OUTPUT) && defined(ELEMENT_SIZE) && defined(WIDTH_INPUT) && defined(NUM_GROUPS)