/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Types.h" #include "arm_compute/runtime/NEON/NEFunctions.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "utils/Utils.h" #include using namespace arm_compute; using namespace utils; class NESGEMMExample : public Example { public: bool do_setup(int argc, char **argv) override { NPYLoader npy0; NPYLoader npy1; NPYLoader npy2; alpha = 1.0f; beta = 0.0f; std::ifstream stream; if(argc > 1) { stream.open(argv[1], std::fstream::in); } if(argc < 3 || (argc < 4 && stream.bad())) { // Print help std::cout << "Usage: 1) ./build/neon_sgemm input_matrix_1.npy input_matrix_2.npy [input_matrix_3.npy] [alpha = 1] [beta = 0]\n"; std::cout << " 2) ./build/neon_sgemm M N K [alpha = 1.0f] [beta = 0.0f]\n\n"; std::cout << "Too few or no input_matrices provided. Using M=7, N=3, K=5, alpha=1.0f and beta=0.0f\n\n"; src0.allocator()->init(TensorInfo(TensorShape(5U, 7U), 1, DataType::F32)); src1.allocator()->init(TensorInfo(TensorShape(3U, 5U), 1, DataType::F32)); src2.allocator()->init(TensorInfo(TensorShape(3U, 7U), 1, DataType::F32)); } else { if(stream.good()) /* case file1.npy file2.npy [file3.npy] [alpha = 1.0f] [beta = 0.0f] */ { npy0.open(argv[1]); npy0.init_tensor(src0, DataType::F32); npy1.open(argv[2]); npy1.init_tensor(src1, DataType::F32); if(argc > 3) { stream.close(); stream.clear(); stream.open(argv[3], std::fstream::in); if(stream.good()) /* case with third file */ { npy2.open(argv[3]); npy2.init_tensor(src2, DataType::F32); if(argc > 4) { // Convert string to float alpha = strtof(argv[4], nullptr); if(argc > 5) { // Convert string to float beta = strtof(argv[5], nullptr); } } } else /* case without third file */ { alpha = strtof(argv[3], nullptr); if(argc > 4) { beta = strtof(argv[4], nullptr); } } } } else /* case M N K [alpha = 1.0f] [beta = 0.0f] */ { size_t M = strtol(argv[1], nullptr, 10); size_t N = strtol(argv[2], nullptr, 10); size_t K = strtol(argv[3], nullptr, 10); src0.allocator()->init(TensorInfo(TensorShape(K, M), 1, DataType::F32)); src1.allocator()->init(TensorInfo(TensorShape(N, K), 1, DataType::F32)); src2.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::F32)); if(argc > 4) { alpha = strtof(argv[4], nullptr); if(argc > 5) { beta = strtof(argv[5], nullptr); } } } } init_sgemm_output(dst, src0, src1, DataType::F32); // Configure function sgemm.configure(&src0, &src1, nullptr, &dst, alpha, beta); // Allocate all the images src0.allocator()->allocate(); src1.allocator()->allocate(); dst.allocator()->allocate(); // Fill the input images with either the data provided or random data if(npy0.is_open()) { npy0.fill_tensor(src0); npy1.fill_tensor(src1); output_filename = "sgemm_out.npy"; is_fortran = npy0.is_fortran(); if(npy2.is_open()) { src2.allocator()->allocate(); npy2.fill_tensor(src2); } } else { src2.allocator()->allocate(); fill_random_tensor(src0, -1.f, 1.f); fill_random_tensor(src1, -1.f, 1.f); fill_random_tensor(src2, -1.f, 1.f); } // Dummy run for CLTuner sgemm.run(); return true; } void do_run() override { // Execute the function sgemm.run(); } void do_teardown() override { if(!output_filename.empty()) /* Save to .npy file */ { save_to_npy(dst, output_filename, is_fortran); } } private: Tensor src0{}, src1{}, src2{}, dst{}; NEGEMM sgemm{}; float alpha{}, beta{}; bool is_fortran{}; std::string output_filename{}; }; /** Main program for sgemm test * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Matrix A, [optional] Matrix B, [optional] Matrix C, [optional] alpha, [optional] beta ) */ int main(int argc, char **argv) { return utils::run_example(argc, argv); }