/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/NEFunctions.h" #include "arm_compute/core/Types.h" #include "utils/ImageLoader.h" #include "utils/Utils.h" #include #include #include using namespace arm_compute; using namespace utils; class NeonOpticalFlowExample : public Example { public: NeonOpticalFlowExample() : input_points(100), output_points(100), point_estimates(100) { } bool do_setup(int argc, char **argv) override { if(argc < 5) { // Print help std::cout << "Usage: ./build/neon_opticalflow [src_1st.ppm] [src_2nd.ppm] [keypoints] [estimates]\n\n"; const unsigned int img_width = 64; const unsigned int img_height = 64; const unsigned int rect_x = 20; const unsigned int rect_y = 40; const unsigned int rect_s = 8; const unsigned int offsetx = 24; const unsigned int offsety = 3; std::cout << "No input_image provided, creating test data:\n"; std::cout << "\t Image src_1st = (" << img_width << "," << img_height << ")" << std::endl; std::cout << "\t Image src_2nd = (" << img_width << "," << img_height << ")" << std::endl; init_img(src_1st, img_width, img_height, rect_x, rect_y, rect_s); init_img(src_2nd, img_width, img_height, rect_x + offsetx, rect_y + offsety, rect_s); const int num_points = 4; input_points.resize(num_points); point_estimates.resize(num_points); const std::array tracking_coordsx = { rect_x - 1, rect_x, rect_x + 1, rect_x + 2 }; const std::array tracking_coordsy = { rect_y - 1, rect_y, rect_y + 1, rect_y + 2 }; const std::array estimate_coordsx = { rect_x + offsetx - 1, rect_x + offsetx, rect_x + offsetx + 1, rect_x + offsetx + 2 }; const std::array estimate_coordsy = { rect_y + offsety - 1, rect_y + offsety, rect_y + offsety + 1, rect_y + offsety + 2 }; for(int k = 0; k < num_points; ++k) { auto &keypoint = input_points.at(k); keypoint.x = tracking_coordsx[k]; keypoint.y = tracking_coordsy[k]; keypoint.tracking_status = 1; } for(int k = 0; k < num_points; ++k) { auto &keypoint = point_estimates.at(k); keypoint.x = estimate_coordsx[k]; keypoint.y = estimate_coordsy[k]; keypoint.tracking_status = 1; } } else { load_ppm(argv[1], src_1st); load_ppm(argv[2], src_2nd); load_keypoints(argv[3], input_points); load_keypoints(argv[4], point_estimates); } print_points(input_points, "Tracking points : "); print_points(point_estimates, "Estimates points : "); const unsigned int num_levels = 3; // Initialise and allocate pyramids PyramidInfo pyramid_info(num_levels, SCALE_PYRAMID_HALF, src_1st.info()->tensor_shape(), src_1st.info()->format()); pyr_1st.init_auto_padding(pyramid_info); pyr_2nd.init_auto_padding(pyramid_info); pyrf_1st.configure(&src_1st, &pyr_1st, BorderMode::UNDEFINED, 0); pyrf_2nd.configure(&src_2nd, &pyr_2nd, BorderMode::UNDEFINED, 0); output_points.resize(input_points.num_values()); optkf.configure(&pyr_1st, &pyr_2nd, &input_points, &point_estimates, &output_points, Termination::TERM_CRITERIA_BOTH, 0.01f, 15, 5, true, BorderMode::UNDEFINED, 0); pyr_1st.allocate(); pyr_2nd.allocate(); return true; } void do_run() override { //Execute the functions: pyrf_1st.run(); pyrf_2nd.run(); optkf.run(); } void do_teardown() override { print_points(output_points, "Output points : "); } private: /** Loads the input keypoints from a file into an array * * @param[in] fn Filename containing the keypoints. Each line must have two values X Y. * @param[out] img Reference to an unintialised KeyPointArray */ bool load_keypoints(const std::string &fn, KeyPointArray &array) { assert(!fn.empty()); std::ifstream f(fn); if(f.is_open()) { std::cout << "Reading points from " << fn << std::endl; std::vector v; for(std::string line; std::getline(f, line);) { std::stringstream ss(line); std::string xcoord; std::string ycoord; getline(ss, xcoord, ' '); getline(ss, ycoord, ' '); KeyPoint kp; kp.x = std::stoi(xcoord); kp.y = std::stoi(ycoord); kp.tracking_status = 1; v.push_back(kp); } const int num_points = v.size(); array.resize(num_points); for(int k = 0; k < num_points; ++k) { auto &keypoint = array.at(k); keypoint = v[k]; } return true; } else { std::cout << "Cannot open keypoints file " << fn << std::endl; return false; } } /** Creates and Image and fills it with the ppm data from the file * * @param[in] fn PPM filename to be loaded * @param[out] img Reference to an unintialised image instance */ bool load_ppm(const std::string &fn, Image &img) { assert(!fn.empty()); PPMLoader ppm; ppm.open(fn); ppm.init_image(img, Format::U8); img.allocator()->allocate(); if(ppm.is_open()) { std::cout << "Reading image " << fn << std::endl; ppm.fill_image(img); return true; } else { std::cout << "Cannot open " << fn << std::endl; return false; } } /** Creates and Image and draws a square in the specified coordinares. * * @param[out] img Reference to an unintialised image instance * @param[in] img_width Width of the image to be created * @param[in] img_height Height of the image to be created * @param[in] square_center_x Coordinate along x-axis to be used as the center for the square * @param[in] square_center_y Coordinate along y-axis to be used as the center for the square * @param[in] square_size Size in pixels to be used for the square */ void init_img(Image &img, unsigned int img_width, unsigned int img_height, unsigned int square_center_x, unsigned int square_center_y, unsigned int square_size) { img.allocator()->init(TensorInfo(img_width, img_height, Format::U8)); img.allocator()->allocate(); const unsigned int square_half = square_size / 2; // assert the square is in the bounds of the image assert(square_center_x > square_half && square_center_x + square_half < img_width); assert(square_center_y > square_half && square_center_y + square_half < img_height); // get ptr to the top left pixel for the squeare std::fill(img.buffer(), img.buffer() + img_width * img_height, 0); for(unsigned int i = 0; i < square_size; ++i) { for(unsigned int j = 0; j < square_size; ++j) { uint8_t *ptr = img.ptr_to_element(Coordinates(square_center_x - square_half + j, square_center_y - square_half + i)); *ptr = 0xFF; } } } /** Prints an array of keypoints and an optional label * * @param[in] a Keypoint array to be printed * @param[in] str Label to be printed before the array */ void print_points(const KeyPointArray &a, const std::string &str = "") { std::cout << str << std::endl; for(unsigned int k = 0; k < a.num_values(); ++k) { auto kp = a.at(k); std::cout << "\t " << " (x,y) = (" << kp.x << "," << kp.y << ")"; std::cout << " strength = " << kp.strength << " " << " scale = " << kp.scale << " orientation " << kp.orientation << " status " << kp.tracking_status << " err = " << kp.error << std::endl; } } Pyramid pyr_1st{}; Pyramid pyr_2nd{}; NEGaussianPyramidHalf pyrf_1st{}; NEGaussianPyramidHalf pyrf_2nd{}; NEOpticalFlow optkf{}; Image src_1st{}, src_2nd{}; KeyPointArray input_points; KeyPointArray output_points; KeyPointArray point_estimates; }; /** Main program for optical flow test * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Path to PPM image to process ) */ int main(int argc, char **argv) { return utils::run_example(argc, argv); }