/* * Copyright (c) 2016-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Types.h" #include "arm_compute/runtime/NEON/NEFunctions.h" #include "utils/Utils.h" #include #include using namespace arm_compute; using namespace utils; class NEONCopyObjectsExample : public Example { public: bool do_setup(int argc, char **argv) override { ARM_COMPUTE_UNUSED(argc); ARM_COMPUTE_UNUSED(argv); /** [Copy objects example] */ constexpr unsigned int width = 4; constexpr unsigned int height = 3; constexpr unsigned int batch = 2; src_data = new float[width * height * batch]; dst_data = new float[width * height * batch]; // Fill src_data with pseudo(meaningless) values: for (unsigned int b = 0; b < batch; b++) { for (unsigned int h = 0; h < height; h++) { for (unsigned int w = 0; w < width; w++) { src_data[b * (width * height) + h * width + w] = static_cast(100 * b + 10 * h + w); } } } // Initialize the tensors dimensions and type: const TensorShape shape(width, height, batch); input.allocator()->init(TensorInfo(shape, 1, DataType::F32)); output.allocator()->init(TensorInfo(shape, 1, DataType::F32)); // Configure softmax: softmax.configure(&input, &output); // Allocate the input / output tensors: input.allocator()->allocate(); output.allocator()->allocate(); // Fill the input tensor: // Simplest way: create an iterator to iterate through each element of the input tensor: Window input_window; input_window.use_tensor_dimensions(input.info()->tensor_shape()); std::cout << " Dimensions of the input's iterator:\n"; std::cout << " X = [start=" << input_window.x().start() << ", end=" << input_window.x().end() << ", step=" << input_window.x().step() << "]\n"; std::cout << " Y = [start=" << input_window.y().start() << ", end=" << input_window.y().end() << ", step=" << input_window.y().step() << "]\n"; std::cout << " Z = [start=" << input_window.z().start() << ", end=" << input_window.z().end() << ", step=" << input_window.z().step() << "]\n"; // Create an iterator: Iterator input_it(&input, input_window); // Iterate through the elements of src_data and copy them one by one to the input tensor: // This is equivalent to: // for( unsigned int z = 0; z < batch; ++z) // { // for( unsigned int y = 0; y < height; ++y) // { // for( unsigned int x = 0; x < width; ++x) // { // *reinterpret_cast( input.buffer() + input.info()->offset_element_in_bytes(Coordinates(x,y,z))) = src_data[ z * (width*height) + y * width + x]; // } // } // } // Except it works for an arbitrary number of dimensions execute_window_loop( input_window, [&](const Coordinates &id) { std::cout << "Setting item [" << id.x() << "," << id.y() << "," << id.z() << "]\n"; *reinterpret_cast(input_it.ptr()) = src_data[id.z() * (width * height) + id.y() * width + id.x()]; }, input_it); // More efficient way: create an iterator to iterate through each row (instead of each element) of the output tensor: Window output_window; output_window.use_tensor_dimensions( output.info()->tensor_shape(), /* first_dimension =*/Window::DimY); // Iterate through the rows (not each element) std::cout << " Dimensions of the output's iterator:\n"; std::cout << " X = [start=" << output_window.x().start() << ", end=" << output_window.x().end() << ", step=" << output_window.x().step() << "]\n"; std::cout << " Y = [start=" << output_window.y().start() << ", end=" << output_window.y().end() << ", step=" << output_window.y().step() << "]\n"; std::cout << " Z = [start=" << output_window.z().start() << ", end=" << output_window.z().end() << ", step=" << output_window.z().step() << "]\n"; // Create an iterator: Iterator output_it(&output, output_window); // Iterate through the rows of the output tensor and copy them to dst_data: // This is equivalent to: // for( unsigned int z = 0; z < batch; ++z) // { // for( unsigned int y = 0; y < height; ++y) // { // memcpy( dst_data + z * (width*height) + y * width, input.buffer() + input.info()->offset_element_in_bytes(Coordinates(0,y,z)), width * sizeof(float)); // } // } // Except it works for an arbitrary number of dimensions execute_window_loop( output_window, [&](const Coordinates &id) { std::cout << "Copying one row starting from [" << id.x() << "," << id.y() << "," << id.z() << "]\n"; // Copy one whole row: memcpy(dst_data + id.z() * (width * height) + id.y() * width, output_it.ptr(), width * sizeof(float)); }, output_it); /** [Copy objects example] */ return true; } void do_run() override { // Run softmax: softmax.run(); } void do_teardown() override { delete[] src_data; delete[] dst_data; } private: Tensor input{}, output{}; float *src_data{}; float *dst_data{}; NESoftmaxLayer softmax{}; }; /** Main program for the copy objects test * * @param[in] argc Number of arguments * @param[in] argv Arguments */ int main(int argc, char **argv) { return utils::run_example(argc, argv); }