/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/graph.h" #include "support/ToolchainSupport.h" #include "utils/CommonGraphOptions.h" #include "utils/GraphUtils.h" #include "utils/Utils.h" using namespace arm_compute::utils; using namespace arm_compute::graph::frontend; using namespace arm_compute::graph_utils; /** Example demonstrating how to implement ShuffleNet network using the Compute Library's graph API */ class ShuffleNetExample : public Example { public: ShuffleNetExample() : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "ShuffleNet") { } bool do_setup(int argc, char **argv) override { // Parse arguments cmd_parser.parse(argc, argv); // Consume common parameters common_params = consume_common_graph_parameters(common_opts); // Return when help menu is requested if(common_params.help) { cmd_parser.print_help(argv[0]); return false; } // Set default layout if needed (Single kernel grouped convolution not yet supported int NHWC) if(!common_opts.data_layout->is_set()) { common_params.data_layout = DataLayout::NHWC; } // Checks ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph"); // Print parameter values std::cout << common_params << std::endl; std::cout << "Model: Shufflenet_1_g4" << std::endl; // Create model path std::string model_path = "/cnn_data/shufflenet_model/"; // Get trainable parameters data path std::string data_path = common_params.data_path; // Add model path to data path if(!data_path.empty()) { data_path += model_path; } // Create input descriptor const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, common_params.data_layout); TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout); // Set weights trained layout const DataLayout weights_layout = DataLayout::NCHW; // Create preprocessor std::unique_ptr preprocessor = arm_compute::support::cpp14::make_unique(0); graph << common_params.target << common_params.fast_math_hint << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */)) << ConvolutionLayer( 3U, 3U, 24U, get_weights_accessor(data_path, "conv3_0_w_0.npy", weights_layout), get_weights_accessor(data_path, "conv3_0_b_0.npy", weights_layout), PadStrideInfo(2, 2, 1, 1)) .set_name("Conv1/convolution") << BatchNormalizationLayer( get_weights_accessor(data_path, "conv3_0_bn_rm_0.npy"), get_weights_accessor(data_path, "conv3_0_bn_riv_0.npy"), get_weights_accessor(data_path, "conv3_0_bn_s_0.npy"), get_weights_accessor(data_path, "conv3_0_bn_b_0.npy"), 1e-5f) .set_name("Conv1/BatchNorm") << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv1/Relu") << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 1, 1))).set_name("pool1/MaxPool"); // Stage 2 add_residual_block(data_path, DataLayout::NCHW, 0U /* unit */, 112U /* depth */, 2U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 1U /* unit */, 136U /* depth */, 1U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 2U /* unit */, 136U /* depth */, 1U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 3U /* unit */, 136U /* depth */, 1U /* stride */); // Stage 3 add_residual_block(data_path, DataLayout::NCHW, 4U /* unit */, 136U /* depth */, 2U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 5U /* unit */, 272U /* depth */, 1U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 6U /* unit */, 272U /* depth */, 1U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 7U /* unit */, 272U /* depth */, 1U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 8U /* unit */, 272U /* depth */, 1U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 9U /* unit */, 272U /* depth */, 1U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 10U /* unit */, 272U /* depth */, 1U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 11U /* unit */, 272U /* depth */, 1U /* stride */); // Stage 4 add_residual_block(data_path, DataLayout::NCHW, 12U /* unit */, 272U /* depth */, 2U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 13U /* unit */, 544U /* depth */, 1U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 14U /* unit */, 544U /* depth */, 1U /* stride */); add_residual_block(data_path, DataLayout::NCHW, 15U /* unit */, 544U /* depth */, 1U /* stride */); graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG)).set_name("predictions/AvgPool") << FlattenLayer().set_name("predictions/Reshape") << FullyConnectedLayer( 1000U, get_weights_accessor(data_path, "pred_w_0.npy", weights_layout), get_weights_accessor(data_path, "pred_b_0.npy")) .set_name("predictions/FC") << SoftmaxLayer().set_name("predictions/Softmax") << OutputLayer(get_output_accessor(common_params, 5)); // Finalize graph GraphConfig config; config.num_threads = common_params.threads; config.use_tuner = common_params.enable_tuner; config.tuner_mode = common_params.tuner_mode; config.tuner_file = common_params.tuner_file; graph.finalize(common_params.target, config); return true; } void do_run() override { // Run graph graph.run(); } private: CommandLineParser cmd_parser; CommonGraphOptions common_opts; CommonGraphParams common_params; Stream graph; void add_residual_block(const std::string &data_path, DataLayout weights_layout, unsigned int unit, unsigned int depth, unsigned int stride) { PadStrideInfo dwc_info = PadStrideInfo(1, 1, 1, 1); const unsigned int gconv_id = unit * 2; const unsigned int num_groups = 4; const std::string unit_id_name = arm_compute::support::cpp11::to_string(unit); const std::string gconv_id_name = arm_compute::support::cpp11::to_string(gconv_id); const std::string gconv_id_1_name = arm_compute::support::cpp11::to_string(gconv_id + 1); const std::string unit_name = "unit" + unit_id_name; SubStream left_ss(graph); SubStream right_ss(graph); if(stride == 2) { right_ss << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, PadStrideInfo(2, 2, 1, 1))).set_name(unit_name + "/pool_1/AveragePool"); dwc_info = PadStrideInfo(2, 2, 1, 1); } left_ss << ConvolutionLayer( 1U, 1U, depth, get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_w_0.npy", weights_layout), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0), num_groups) .set_name(unit_name + "/gconv1_" + gconv_id_name + "/convolution") << BatchNormalizationLayer( get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_rm_0.npy"), get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_riv_0.npy"), get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_s_0.npy"), get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_b_0.npy"), 1e-5f) .set_name(unit_name + "/gconv1_" + gconv_id_name + "/BatchNorm") << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "/gconv1_" + gconv_id_name + "/Relu") << ChannelShuffleLayer(num_groups).set_name(unit_name + "/shuffle_0/ChannelShufle") << DepthwiseConvolutionLayer( 3U, 3U, get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_w_0.npy", weights_layout), std::unique_ptr(nullptr), dwc_info) .set_name(unit_name + "/gconv3_" + unit_id_name + "/depthwise") << BatchNormalizationLayer( get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_rm_0.npy"), get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_riv_0.npy"), get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_s_0.npy"), get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_b_0.npy"), 1e-5f) .set_name(unit_name + "/gconv3_" + unit_id_name + "/BatchNorm") << ConvolutionLayer( 1U, 1U, depth, get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_w_0.npy", weights_layout), std::unique_ptr(nullptr), PadStrideInfo(1, 1, 0, 0), num_groups) .set_name(unit_name + "/gconv1_" + gconv_id_1_name + "/convolution") << BatchNormalizationLayer( get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_rm_0.npy"), get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_riv_0.npy"), get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_s_0.npy"), get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_b_0.npy"), 1e-5f) .set_name(unit_name + "/gconv1_" + gconv_id_1_name + "/BatchNorm"); if(stride == 2) { graph << ConcatLayer(std::move(left_ss), std::move(right_ss)).set_name(unit_name + "/Concat"); } else { graph << EltwiseLayer(std::move(left_ss), std::move(right_ss), EltwiseOperation::Add).set_name(unit_name + "/Add"); } graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "/Relu"); } }; /** Main program for ShuffleNet * * Model is based on: * https://arxiv.org/abs/1707.01083 * "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices" * Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun * * Provenance: https://s3.amazonaws.com/download.onnx/models/opset_9/shufflenet.tar.gz * * @note To list all the possible arguments execute the binary appended with the --help option * * @param[in] argc Number of arguments * @param[in] argv Arguments */ int main(int argc, char **argv) { return arm_compute::utils::run_example(argc, argv); }