/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/graph.h" #include "support/ToolchainSupport.h" #include "utils/GraphUtils.h" #include "utils/Utils.h" #include using namespace arm_compute::utils; using namespace arm_compute::graph::frontend; using namespace arm_compute::graph_utils; /** Example demonstrating how to implement ResNeXt50 network using the Compute Library's graph API * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] npy_in, [optional] npy_out, [optional] Fast math for convolution layer (0 = DISABLED, 1 = ENABLED) ) */ class GraphResNeXt50Example : public Example { public: void do_setup(int argc, char **argv) override { std::string data_path; /* Path to the trainable data */ std::string npy_in; /* Input npy data */ std::string npy_out; /* Output npy data */ // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON const int target = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0; Target target_hint = set_target_hint(target); FastMathHint fast_math_hint = FastMathHint::DISABLED; // Parse arguments if(argc < 2) { // Print help std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [npy_in] [npy_out] [fast_math_hint]\n\n"; std::cout << "No data folder provided: using random values\n\n"; } else if(argc == 2) { std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [npy_in] [npy_out] [fast_math_hint]\n\n"; std::cout << "No data folder provided: using random values\n\n"; } else if(argc == 3) { data_path = argv[2]; std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [npy_in] [npy_out] [fast_math_hint]\n\n"; std::cout << "No input npy file provided: using random values\n\n"; } else if(argc == 4) { data_path = argv[2]; npy_in = argv[3]; std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [npy_out] [fast_math_hint]\n\n"; std::cout << "No output npy file provided: skipping output accessor\n\n"; } else if(argc == 5) { data_path = argv[2]; npy_in = argv[3]; npy_out = argv[4]; std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " " << argv[4] << " [fast_math_hint]\n\n"; std::cout << "No fast math info provided: disabling fast math\n\n"; } else { data_path = argv[2]; npy_in = argv[3]; npy_out = argv[4]; fast_math_hint = (std::strtol(argv[5], nullptr, 1) == 0) ? FastMathHint::DISABLED : FastMathHint::ENABLED; } graph << target_hint << fast_math_hint << InputLayer(TensorDescriptor(TensorShape(224U, 224U, 3U, 1U), DataType::F32), get_input_accessor(npy_in)) << ScaleLayer(get_weights_accessor(data_path, "/cnn_data/resnext50_model/bn_data_mul.npy"), get_weights_accessor(data_path, "/cnn_data/resnext50_model/bn_data_add.npy")) .set_name("bn_data/Scale") << ConvolutionLayer( 7U, 7U, 64U, get_weights_accessor(data_path, "/cnn_data/resnext50_model/conv0_weights.npy"), get_weights_accessor(data_path, "/cnn_data/resnext50_model/conv0_biases.npy"), PadStrideInfo(2, 2, 2, 3, 2, 3, DimensionRoundingType::FLOOR)) .set_name("conv0/Convolution") << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv0/Relu") << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR))).set_name("pool0"); add_residual_block(data_path, /*ofm*/ 256, /*stage*/ 1, /*num_unit*/ 3, /*stride_conv_unit1*/ 1); add_residual_block(data_path, 512, 2, 4, 2); add_residual_block(data_path, 1024, 3, 6, 2); add_residual_block(data_path, 2048, 4, 3, 2); graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG)).set_name("pool1") << FlattenLayer().set_name("predictions/Reshape") << OutputLayer(get_npy_output_accessor(npy_out, TensorShape(2048U), DataType::F32)); // Finalize graph GraphConfig config; config.use_tuner = (target == 2); graph.finalize(target_hint, config); } void do_run() override { // Run graph graph.run(); } private: Stream graph{ 0, "ResNeXt50" }; void add_residual_block(const std::string &data_path, unsigned int base_depth, unsigned int stage, unsigned int num_units, unsigned int stride_conv_unit1) { for(unsigned int i = 0; i < num_units; ++i) { std::stringstream unit_path_ss; unit_path_ss << "/cnn_data/resnext50_model/stage" << stage << "_unit" << (i + 1) << "_"; std::string unit_path = unit_path_ss.str(); std::stringstream unit_name_ss; unit_name_ss << "stage" << stage << "/unit" << (i + 1) << "/"; std::string unit_name = unit_name_ss.str(); PadStrideInfo pad_grouped_conv(1, 1, 1, 1); if(i == 0) { pad_grouped_conv = (stage == 1) ? PadStrideInfo(stride_conv_unit1, stride_conv_unit1, 1, 1) : PadStrideInfo(stride_conv_unit1, stride_conv_unit1, 0, 1, 0, 1, DimensionRoundingType::FLOOR); } SubStream right(graph); right << ConvolutionLayer( 1U, 1U, base_depth / 2, get_weights_accessor(data_path, unit_path + "conv1_weights.npy"), get_weights_accessor(data_path, unit_path + "conv1_biases.npy"), PadStrideInfo(1, 1, 0, 0)) .set_name(unit_name + "conv1/convolution") << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu") << ConvolutionLayer( 3U, 3U, base_depth / 2, get_weights_accessor(data_path, unit_path + "conv2_weights.npy"), std::unique_ptr(nullptr), pad_grouped_conv, 32) .set_name(unit_name + "conv2/convolution") << ScaleLayer(get_weights_accessor(data_path, unit_path + "bn2_mul.npy"), get_weights_accessor(data_path, unit_path + "bn2_add.npy")) .set_name(unit_name + "conv1/Scale") << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv2/Relu") << ConvolutionLayer( 1U, 1U, base_depth, get_weights_accessor(data_path, unit_path + "conv3_weights.npy"), get_weights_accessor(data_path, unit_path + "conv3_biases.npy"), PadStrideInfo(1, 1, 0, 0)) .set_name(unit_name + "conv3/convolution"); SubStream left(graph); if(i == 0) { left << ConvolutionLayer( 1U, 1U, base_depth, get_weights_accessor(data_path, unit_path + "sc_weights.npy"), std::unique_ptr(nullptr), PadStrideInfo(stride_conv_unit1, stride_conv_unit1, 0, 0)) .set_name(unit_name + "sc/convolution") << ScaleLayer(get_weights_accessor(data_path, unit_path + "sc_bn_mul.npy"), get_weights_accessor(data_path, unit_path + "sc_bn_add.npy")) .set_name(unit_name + "sc/scale"); } graph << BranchLayer(BranchMergeMethod::ADD, std::move(left), std::move(right)).set_name(unit_name + "add"); graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu"); } } }; /** Main program for ResNeXt50 * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [[optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] npy_in, [optional] npy_out ) */ int main(int argc, char **argv) { return arm_compute::utils::run_example(argc, argv); }