/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/graph2.h" #include "support/ToolchainSupport.h" #include "utils/GraphUtils.h" #include "utils/Utils.h" #include #include using namespace arm_compute::utils; using namespace arm_compute::graph2::frontend; using namespace arm_compute::graph_utils; /** Example demonstrating how to implement Googlenet's network using the Compute Library's graph API * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] image, [optional] labels ) */ class GraphGooglenetExample : public Example { public: void do_setup(int argc, char **argv) override { std::string data_path; /* Path to the trainable data */ std::string image; /* Image data */ std::string label; /* Label data */ // Create a preprocessor object const std::array mean_rgb{ { 122.68f, 116.67f, 104.01f } }; std::unique_ptr preprocessor = arm_compute::support::cpp14::make_unique(mean_rgb); // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON const int target = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0; Target target_hint = set_target_hint2(target); ConvolutionMethod convolution_hint = (target_hint == Target::CL) ? ConvolutionMethod::WINOGRAD : ConvolutionMethod::GEMM; bool enable_tuning = (target == 2); bool enable_memory_management = true; // Parse arguments if(argc < 2) { // Print help std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [image] [labels]\n\n"; std::cout << "No data folder provided: using random values\n\n"; } else if(argc == 2) { std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [image] [labels]\n\n"; std::cout << "No data folder provided: using random values\n\n"; } else if(argc == 3) { data_path = argv[2]; std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [image] [labels]\n\n"; std::cout << "No image provided: using random values\n\n"; } else if(argc == 4) { data_path = argv[2]; image = argv[3]; std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [labels]\n\n"; std::cout << "No text file with labels provided: skipping output accessor\n\n"; } else { data_path = argv[2]; image = argv[3]; label = argv[4]; } graph << target_hint << InputLayer(TensorDescriptor(TensorShape(224U, 224U, 3U, 1U), DataType::F32), get_input_accessor(image, std::move(preprocessor))) << ConvolutionLayer( 7U, 7U, 64U, get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_w.npy"), get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_b.npy"), PadStrideInfo(2, 2, 3, 3)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)) << convolution_hint << ConvolutionLayer( 1U, 1U, 64U, get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_w.npy"), get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_b.npy"), PadStrideInfo(1, 1, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, 192U, get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_w.npy"), get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_b.npy"), PadStrideInfo(1, 1, 1, 1)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << get_inception_node(data_path, "inception_3a", 64, std::make_tuple(96U, 128U), std::make_tuple(16U, 32U), 32U) << get_inception_node(data_path, "inception_3b", 128, std::make_tuple(128U, 192U), std::make_tuple(32U, 96U), 64U) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << get_inception_node(data_path, "inception_4a", 192, std::make_tuple(96U, 208U), std::make_tuple(16U, 48U), 64U) << get_inception_node(data_path, "inception_4b", 160, std::make_tuple(112U, 224U), std::make_tuple(24U, 64U), 64U) << get_inception_node(data_path, "inception_4c", 128, std::make_tuple(128U, 256U), std::make_tuple(24U, 64U), 64U) << get_inception_node(data_path, "inception_4d", 112, std::make_tuple(144U, 288U), std::make_tuple(32U, 64U), 64U) << get_inception_node(data_path, "inception_4e", 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << get_inception_node(data_path, "inception_5a", 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U) << get_inception_node(data_path, "inception_5b", 384, std::make_tuple(192U, 384U), std::make_tuple(48U, 128U), 128U) << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 7, PadStrideInfo(1, 1, 0, 0, DimensionRoundingType::CEIL))) << FullyConnectedLayer( 1000U, get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_w.npy"), get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_b.npy")) << SoftmaxLayer() << OutputLayer(get_output_accessor(label, 5)); // Finalize graph graph.finalize(target_hint, enable_tuning, enable_memory_management); } void do_run() override { // Run graph graph.run(); } private: Stream graph{ 0, "GoogleNet" }; BranchLayer get_inception_node(const std::string &data_path, std::string &¶m_path, unsigned int a_filt, std::tuple b_filters, std::tuple c_filters, unsigned int d_filt) { std::string total_path = "/cnn_data/googlenet_model/" + param_path + "/" + param_path + "_"; SubStream i_a(graph); i_a << ConvolutionLayer( 1U, 1U, a_filt, get_weights_accessor(data_path, total_path + "1x1_w.npy"), get_weights_accessor(data_path, total_path + "1x1_b.npy"), PadStrideInfo(1, 1, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubStream i_b(graph); i_b << ConvolutionLayer( 1U, 1U, std::get<0>(b_filters), get_weights_accessor(data_path, total_path + "3x3_reduce_w.npy"), get_weights_accessor(data_path, total_path + "3x3_reduce_b.npy"), PadStrideInfo(1, 1, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, std::get<1>(b_filters), get_weights_accessor(data_path, total_path + "3x3_w.npy"), get_weights_accessor(data_path, total_path + "3x3_b.npy"), PadStrideInfo(1, 1, 1, 1)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubStream i_c(graph); i_c << ConvolutionLayer( 1U, 1U, std::get<0>(c_filters), get_weights_accessor(data_path, total_path + "5x5_reduce_w.npy"), get_weights_accessor(data_path, total_path + "5x5_reduce_b.npy"), PadStrideInfo(1, 1, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 5U, 5U, std::get<1>(c_filters), get_weights_accessor(data_path, total_path + "5x5_w.npy"), get_weights_accessor(data_path, total_path + "5x5_b.npy"), PadStrideInfo(1, 1, 2, 2)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubStream i_d(graph); i_d << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL))) << ConvolutionLayer( 1U, 1U, d_filt, get_weights_accessor(data_path, total_path + "pool_proj_w.npy"), get_weights_accessor(data_path, total_path + "pool_proj_b.npy"), PadStrideInfo(1, 1, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d)); } }; /** Main program for Googlenet * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] image, [optional] labels ) */ int main(int argc, char **argv) { return arm_compute::utils::run_example(argc, argv); }