/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_CL /* Needed by Utils.cpp to handle OpenCL exceptions properly */ #error "This example needs to be built with -DARM_COMPUTE_CL" #endif /* ARM_COMPUTE_CL */ #include "arm_compute/graph/Graph.h" #include "arm_compute/graph/Nodes.h" #include "arm_compute/graph/SubGraph.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "arm_compute/runtime/Scheduler.h" #include "support/ToolchainSupport.h" #include "utils/GraphUtils.h" #include "utils/Utils.h" #include #include #include #include using namespace arm_compute::graph; using namespace arm_compute::graph_utils; /** Generates appropriate accessor according to the specified path * * @note If path is empty will generate a DummyAccessor else will generate a NumPyBinLoader * * @param path Path to the data files * @param data_file Relative path to the data files from path * * @return An appropriate tensor accessor */ std::unique_ptr get_accessor(const std::string &path, const std::string &data_file) { if(path.empty()) { return arm_compute::support::cpp14::make_unique(); } else { return arm_compute::support::cpp14::make_unique(path + data_file); } } BranchLayer get_inception_node(const std::string &data_path, std::string &¶m_path, unsigned int a_filt, std::tuple b_filters, std::tuple c_filters, unsigned int d_filt) { std::string total_path = "/cnn_data/googlenet_model/" + param_path + "/" + param_path + "_"; SubGraph i_a; i_a << ConvolutionLayer( 1U, 1U, a_filt, get_accessor(data_path, total_path + "1x1_w.npy"), get_accessor(data_path, total_path + "1x1_b.npy"), PadStrideInfo(1, 1, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_b; i_b << ConvolutionLayer( 1U, 1U, std::get<0>(b_filters), get_accessor(data_path, total_path + "3x3_reduce_w.npy"), get_accessor(data_path, total_path + "3x3_reduce_b.npy"), PadStrideInfo(1, 1, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, std::get<1>(b_filters), get_accessor(data_path, total_path + "3x3_w.npy"), get_accessor(data_path, total_path + "3x3_b.npy"), PadStrideInfo(1, 1, 1, 1)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_c; i_c << ConvolutionLayer( 1U, 1U, std::get<0>(c_filters), get_accessor(data_path, total_path + "5x5_reduce_w.npy"), get_accessor(data_path, total_path + "5x5_reduce_b.npy"), PadStrideInfo(1, 1, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 5U, 5U, std::get<1>(c_filters), get_accessor(data_path, total_path + "5x5_w.npy"), get_accessor(data_path, total_path + "5x5_b.npy"), PadStrideInfo(1, 1, 2, 2)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); SubGraph i_d; i_d << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL))) << ConvolutionLayer( 1U, 1U, d_filt, get_accessor(data_path, total_path + "pool_proj_w.npy"), get_accessor(data_path, total_path + "pool_proj_b.npy"), PadStrideInfo(1, 1, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)); return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d)); } /** Example demonstrating how to implement Googlenet's network using the Compute Library's graph API * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Path to the weights folder, [optional] batches ) */ void main_graph_googlenet(int argc, const char **argv) { std::string data_path; /** Path to the trainable data */ unsigned int batches = 4; /** Number of batches */ // Parse arguments if(argc < 2) { // Print help std::cout << "Usage: " << argv[0] << " [path_to_data] [batches]\n\n"; std::cout << "No data folder provided: using random values\n\n"; } else if(argc == 2) { //Do something with argv[1] data_path = argv[1]; std::cout << "Usage: " << argv[0] << " [path_to_data] [batches]\n\n"; std::cout << "No number of batches where specified, thus will use the default : " << batches << "\n\n"; } else { //Do something with argv[1] and argv[2] data_path = argv[1]; batches = std::strtol(argv[2], nullptr, 0); } // Check if OpenCL is available and initialize the scheduler if(arm_compute::opencl_is_available()) { arm_compute::CLScheduler::get().default_init(); } Graph graph; graph << TargetHint::OPENCL << Tensor(TensorInfo(TensorShape(224U, 224U, 3U, batches), 1, DataType::F32), DummyAccessor()) << ConvolutionLayer( 7U, 7U, 64U, get_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_w.npy"), get_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_b.npy"), PadStrideInfo(2, 2, 3, 3)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)) << ConvolutionLayer( 1U, 1U, 64U, get_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_w.npy"), get_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_b.npy"), PadStrideInfo(1, 1, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << ConvolutionLayer( 3U, 3U, 192U, get_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_w.npy"), get_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_b.npy"), PadStrideInfo(1, 1, 1, 1)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << get_inception_node(data_path, "inception_3a", 64, std::make_tuple(96U, 128U), std::make_tuple(16U, 32U), 32U) << get_inception_node(data_path, "inception_3b", 128, std::make_tuple(128U, 192U), std::make_tuple(32U, 96U), 64U) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << get_inception_node(data_path, "inception_4a", 192, std::make_tuple(96U, 208U), std::make_tuple(16U, 48U), 64U) << get_inception_node(data_path, "inception_4b", 160, std::make_tuple(112U, 224U), std::make_tuple(24U, 64U), 64U) << get_inception_node(data_path, "inception_4c", 128, std::make_tuple(128U, 256U), std::make_tuple(24U, 64U), 64U) << get_inception_node(data_path, "inception_4d", 112, std::make_tuple(144U, 288U), std::make_tuple(32U, 64U), 64U) << get_inception_node(data_path, "inception_4e", 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))) << get_inception_node(data_path, "inception_5a", 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U) << get_inception_node(data_path, "inception_5b", 384, std::make_tuple(192U, 384U), std::make_tuple(48U, 128U), 128U) << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 7, PadStrideInfo(1, 1, 0, 0, DimensionRoundingType::CEIL))) << FullyConnectedLayer( 1000U, get_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_w.npy"), get_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_b.npy")) << SoftmaxLayer() << Tensor(DummyAccessor()); graph.run(); } /** Main program for Googlenet * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Path to the weights folder, [optional] batches ) */ int main(int argc, const char **argv) { return arm_compute::utils::run_example(argc, argv, main_graph_googlenet); }