/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_CL /* Needed by Utils.cpp to handle OpenCL exceptions properly */ #error "This example needs to be built with -DARM_COMPUTE_CL" #endif /* ARM_COMPUTE_CL */ #include "arm_compute/graph/Graph.h" #include "arm_compute/graph/Nodes.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "arm_compute/runtime/CPP/CPPScheduler.h" #include "arm_compute/runtime/Scheduler.h" #include "support/ToolchainSupport.h" #include "utils/GraphUtils.h" #include "utils/Utils.h" #include #include #include using namespace arm_compute::graph; using namespace arm_compute::graph_utils; using namespace arm_compute::logging; /** Generates appropriate accessor according to the specified path * * @note If path is empty will generate a DummyAccessor else will generate a NumPyBinLoader * * @param[in] path Path to the data files * @param[in] data_file Relative path to the data files from path * * @return An appropriate tensor accessor */ std::unique_ptr get_accessor(const std::string &path, const std::string &data_file) { if(path.empty()) { return arm_compute::support::cpp14::make_unique(); } else { return arm_compute::support::cpp14::make_unique(path + data_file); } } /** Generates appropriate input accessor according to the specified ppm_path * * @note If ppm_path is empty will generate a DummyAccessor else will generate a PPMAccessor * * @param[in] ppm_path Path to PPM file * @param[in] mean_r Red mean value to be subtracted from red channel * @param[in] mean_g Green mean value to be subtracted from green channel * @param[in] mean_b Blue mean value to be subtracted from blue channel * * @return An appropriate tensor accessor */ std::unique_ptr get_input_accessor(const std::string &ppm_path, float mean_r, float mean_g, float mean_b) { if(ppm_path.empty()) { return arm_compute::support::cpp14::make_unique(); } else { return arm_compute::support::cpp14::make_unique(ppm_path, true, mean_r, mean_g, mean_b); } } /** Generates appropriate output accessor according to the specified labels_path * * @note If labels_path is empty will generate a DummyAccessor else will generate a TopNPredictionsAccessor * * @param[in] labels_path Path to labels text file * @param[in] top_n (Optional) Number of output classes to print * @param[out] output_stream (Optional) Output stream * * @return An appropriate tensor accessor */ std::unique_ptr get_output_accessor(const std::string &labels_path, size_t top_n = 5, std::ostream &output_stream = std::cout) { if(labels_path.empty()) { return arm_compute::support::cpp14::make_unique(); } else { return arm_compute::support::cpp14::make_unique(labels_path, top_n, output_stream); } } /** Example demonstrating how to implement AlexNet's network using the Compute Library's graph API * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Path to the weights folder, [optional] image, [optional] labels ) */ void main_graph_alexnet(int argc, const char **argv) { std::string data_path; /* Path to the trainable data */ std::string image; /* Image data */ std::string label; /* Label data */ constexpr float mean_r = 122.68f; /* Mean value to subtract from red channel */ constexpr float mean_g = 116.67f; /* Mean value to subtract from green channel */ constexpr float mean_b = 104.01f; /* Mean value to subtract from blue channel */ // Parse arguments if(argc < 2) { // Print help std::cout << "Usage: " << argv[0] << " [path_to_data] [image] [labels]\n\n"; std::cout << "No data folder provided: using random values\n\n"; } else if(argc == 2) { data_path = argv[1]; std::cout << "Usage: " << argv[0] << " " << argv[1] << " [image] [labels]\n\n"; std::cout << "No image provided: using random values\n\n"; } else if(argc == 3) { data_path = argv[1]; image = argv[2]; std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [labels]\n\n"; std::cout << "No text file with labels provided: skipping output accessor\n\n"; } else { data_path = argv[1]; image = argv[2]; label = argv[3]; } // Check if OpenCL is available and initialize the scheduler TargetHint hint = TargetHint::NEON; if(arm_compute::opencl_is_available()) { arm_compute::CLScheduler::get().default_init(); hint = TargetHint::OPENCL; } Graph graph; graph << hint << Tensor(TensorInfo(TensorShape(227U, 227U, 3U, 1U), 1, DataType::F32), get_input_accessor(image, mean_r, mean_g, mean_b)) // Layer 1 << ConvolutionLayer( 11U, 11U, 96U, get_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy"), get_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"), PadStrideInfo(4, 4, 0, 0)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))) // Layer 2 << ConvolutionMethodHint::DIRECT << ConvolutionLayer( 5U, 5U, 256U, get_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy"), get_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"), PadStrideInfo(1, 1, 2, 2), 2) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))) // Layer 3 << ConvolutionLayer( 3U, 3U, 384U, get_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy"), get_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"), PadStrideInfo(1, 1, 1, 1)) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) // Layer 4 << ConvolutionLayer( 3U, 3U, 384U, get_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy"), get_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"), PadStrideInfo(1, 1, 1, 1), 2) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) // Layer 5 << ConvolutionLayer( 3U, 3U, 256U, get_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy"), get_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"), PadStrideInfo(1, 1, 1, 1), 2) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))) // Layer 6 << FullyConnectedLayer( 4096U, get_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy"), get_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy")) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) // Layer 7 << FullyConnectedLayer( 4096U, get_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy"), get_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy")) << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)) // Layer 8 << FullyConnectedLayer( 1000U, get_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy"), get_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy")) // Softmax << SoftmaxLayer() << Tensor(get_output_accessor(label, 5)); // Run graph graph.run(); } /** Main program for AlexNet * * @param[in] argc Number of arguments * @param[in] argv Arguments ( [optional] Path to the weights folder, [optional] image, [optional] labels ) */ int main(int argc, const char **argv) { return arm_compute::utils::run_example(argc, argv, main_graph_alexnet); }