/* * Copyright (c) 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef CKW_INCLUDE_CKW_KERNELWRITER_H #define CKW_INCLUDE_CKW_KERNELWRITER_H #include "ckw/Kernel.h" #include "ckw/TensorInfo.h" #include "ckw/TensorOperand.h" #include "ckw/TensorSampler.h" #include "ckw/TileInfo.h" #include "ckw/TileOperand.h" #include "ckw/types/ConstantData.h" #include "ckw/types/ConvertPolicy.h" #include "ckw/types/DataType.h" #include "ckw/types/Operators.h" #include "ckw/types/TargetArchitecture.h" #include "ckw/types/TargetLanguage.h" #include "ckw/types/TensorComponentType.h" #include "ckw/types/TensorDataLayout.h" #include "ckw/types/TensorSamplerTypes.h" #include "ckw/types/TensorStorageType.h" #include #include #include #include namespace ckw { /** Forward Declarations */ class TileArea; /** A kernel writer. * * This class is used to construct a new kernel by defining arguments, declaring variable and writing code. * * Use @ref KernelWriter::create_instance method to create the kernel writer for the specific target architecture and language. * * After having finished constructing the kernel, call @ref KernelWriter::emit_kernel to get the kernel object. */ class KernelWriter { public: // ============================================================================================= // Construtors and destructor // ============================================================================================= /** Initialize a new instance of @ref KernelWriter class for the specific architecture and language. * * Supported target architectures and languages: * * Architecture | Languages | * ------------------------------|------------------------------| * GpuArmMaliValhall | OpenCL | * * @param[in] architecture The architecture on which the kernel is executed. * @param[in] language The language to write the kernel. */ static std::unique_ptr create_instance(TargetArchitecture architecture, TargetLanguage language); /** Destructor */ virtual ~KernelWriter(); // ============================================================================================= // Data processing // ============================================================================================= /** Write assignment statement: ` = ;`. * * @param[in] dst The destination tile. * @param[in] src The source tile. */ virtual void op_assign(const TileOperand &dst, const TileOperand &src) = 0; /** Write the cast statement: ` = convert_();`. * * @param[in] dst The destination tile. * @param[in] src The source tile. * @param[in] policy The policy governing the behavior of the cast. */ virtual void op_cast(const TileOperand &dst, const TileOperand &src, ConvertPolicy policy) = 0; /** Write the unary expression statement: ` = ;`. * * @param[in] dst The destination tile. * @param[in] op The unary operator. * @param[in] src The source tile. */ virtual void op_unary(const TileOperand &dst, UnaryOp op, const TileOperand &src) = 0; /** Write the binary expression statement: ` = (, );`. * * @param[in] dst The destination tile. * @param[in] op The binary operator. * @param[in] first The first source tile. * @param[in] second The second source tile. */ virtual void op_binary(const TileOperand &dst, BinaryOp op, const TileOperand &first, const TileOperand &second) = 0; /** Write ternary expression statement: ` = (, , );`. * * @param[in] dst The destination tile. * @param[in] op The ternary operator. * @param[in] first The first source tile. * @param[in] second The second source tile. * @param[in] third The third source tile. */ virtual void op_ternary(const TileOperand &dst, TernaryOp op, const TileOperand &first, const TileOperand &second, const TileOperand &third) = 0; // ============================================================================================= // Flow control // ============================================================================================= /** Write if block: `if( ) { }`. * * @param[in] lhs The LHS tile of the condition. * @param[in] op The relational binary operator. * @param[in] rhs The RHS tile of the condition. * @param[in] body The function that writes the body of the if block. */ virtual void op_if(const TileOperand &lhs, BinaryOp op, const TileOperand &rhs, const std::function &body) = 0; /** Write else-if block: `else if( ) { }`. * * @param[in] lhs The LHS tile of the condition. * @param[in] op The relational binary operator. * @param[in] rhs The RHS tile of the condition. * @param[in] body The function that writes the body of the else-if block. */ virtual void op_else_if(const TileOperand &lhs, BinaryOp op, const TileOperand &rhs, const std::function &body) = 0; /** Write an else block: `else { }`. * * @param[in] body The function that writes the body of the else block. */ virtual void op_else(const std::function &body) = 0; /** Write for-loop block: `for(; ; ) { body }`. * * @param[in] var The scalar tile used in loop condition. * @param[in] cond_op The relational binary operator used in loop condition. * @param[in] cond_value The value which the variable is compared against. * @param[in] update_var The scalar tile which is updated each iteration. * @param[in] update_op The assignment operator used for updating the update value. * @param[in] update_value The value which is updated at every iteration. * @param[in] body The function that writes the body of the for-loop block. */ virtual void op_for_loop(const TileOperand &var, BinaryOp cond_op, const TileOperand &cond_value, const TileOperand &update_var, AssignmentOp update_op, const TileOperand &update_value, const std::function &body) = 0; /** Write the return statement. */ virtual void op_return() = 0; // ============================================================================================= // Misc // ============================================================================================= /** Write the statement to get the global ID of the specified dimension. * * @param[in] dst The tile to write the global ID into. * @param[in] dim The dimension. */ virtual void op_get_global_id(const TileOperand &dst, int32_t dim) = 0; /** Write the line comment in debug build. * * This function does not take effect on release build. * * The comment must only contain one line (i.e. no newline character is allowed). * * @param[in] text The comment to be written. */ virtual void op_comment(const std::string &text) = 0; /** Write the statement to print out the value of all the specified tiles. * * The printing statement is constructed so that the prefix and each of the operand are printed in separate lines. * The format for each operand varies depending on whether it is a 2D tile, a vector or a scalar value. * * Example output of the printing statement when it is executed: * * prefix * scalar_name = scalar_value * vector_name = [vector_value_0, vector_value_1, vector_value_2] * tile_name = [[tile_value_00, tile_value_01], [tile_value_10, tile_value_11]] * * @param[in] prefix The first string to be printed out before the list of operands. * @param[in] operands The list of tiles to be included in the printing statement. */ virtual void op_print(const std::string &prefix, const std::vector &operands) = 0; /** Write the given raw code to kernel source code * It's used to address the cases where the user needs to * explicitly add a code where it's not (yet) supported by * the kernel writer utility calls. * * @param[in] raw_code raw code to write as string */ virtual void op_write_raw_code(const std::string &raw_code) = 0; // ============================================================================================= // Code generation // ============================================================================================= /** Emit the kernel object. * * @param[in] name The name of the kernel object to be generated. */ virtual std::unique_ptr emit_kernel(const std::string &name) = 0; // ============================================================================================= // Tensor and tile declaration // ============================================================================================= /** Declare a tensor argument. * * @param[in] name The name of the tensor. * @param[in] info The tensor info. * * @return The @ref TensorOperand object. */ virtual TensorOperand declare_tensor_argument(const std::string &name, const TensorInfo &info) = 0; /** Declare a tile given its name and tile info * * @param[in] name Name of the tile * @param[in] tile_info Shape and data type of the tile * * @return The created tile operand */ virtual TileOperand declare_tile(const std::string &name, const TileInfo &tile_info) = 0; /** Declare a constant tile given a @ref:ConstantData object * * @param[in] data a @ref ckw::ConstantData object that has the values and the * underlying data type of the constant tile * * @return The created constant tile operand */ virtual TileOperand declare_constant_tile(const ConstantData &data) = 0; /** Load the data from the tensor memory to the tile using the sampling information. * * @param[in] tile_op The tile to be loaded. * @param[in] tensor_op The tensor to be read. * @param[in] sampler The tensor sampling information. * @param[in] x x-coordinate * @param[in] y y-coordinate * @param[in] z z-coordinate * @param[in] batch batch */ virtual void op_load(const TileOperand &tile_op, const TensorOperand &tensor_op, TensorSampler &sampler, const TileOperand &x, const TileOperand &y, const TileOperand &z, const TileOperand &batch) = 0; /** Load the data from the tensor memory to the tile in a dilated way using the sampling information. * * Similar to @ref KernelWriter::op_load() and * * @param[in] dilation_x Dilation while reading in x-dimension * @param[in] dilation_y Dilation while reading in y-dimension */ virtual void op_load_dilated(const TileOperand &tile_op, const TensorOperand &tensor_op, TensorSampler &sampler, const TileOperand &x, const TileOperand &y, const TileOperand &z, const TileOperand &batch, const TileOperand &dilation_x, const TileOperand &dilation_y) = 0; /** Store the data to the tensor memory from the tile using the sampling information. * * Similar to @ref KernelWriter::op_load() */ virtual void op_store(const TensorOperand &tensor_op, const TileOperand &tile_op, TensorSampler &sampler, const TileOperand &x, const TileOperand &y, const TileOperand &z, const TileOperand &batch) = 0; /** Store the data to the tensor memory from the tile in a dilated way using the sampling information. * * Similar to @ref KernelWriter::op_load_dilated() */ virtual void op_store_dilated(const TensorOperand &tensor_op, const TileOperand &tile_op, TensorSampler &sampler, const TileOperand &x, const TileOperand &y, const TileOperand &z, const TileOperand &batch, const TileOperand &dilation_x, const TileOperand &dilation_y) = 0; /** Load the data from the tensor memory to the tile using the indirect buffer approach and respecting the sampling information. * * @param[in] tile_op The tile to be loaded. * @param[in] tensor_op The tensor to be read. * @param[in] sampler The tensor sampling information. * @param[in] x x-coordinate * @param[in] y y-coordinate * @param[in] z z-coordinate * @param[in] batch batch */ virtual void op_load_indirect(const TileOperand &tile_op, const TensorOperand &tensor_op, TensorSampler &sampler, const TileOperand &x, const TileOperand &y, const TileOperand &z, const TileOperand &batch_op) = 0; // ============================================================================================= // ID space management // ============================================================================================= /** Create the new unique ID space and return the value. * * This function changes the ID space to a new number which hasn't been used since the creation * of this kernel writer object. * * @return The new ID space value. */ int32_t new_id_space(); /** Get the current ID space. */ int32_t id_space() const; protected: /** Set the current ID space. * * @param[in] value The ID space to be used. */ KernelWriter &id_space(int32_t value); /** Write the body code using the specified function. * * This function makes sure that a new ID space is created before and then is used solely * by the specified body writing function. * The ID space will not be reused after that. * * @param[in] body The function that writes the body code. */ void write_body(const std::function &body); protected: /** Generate full variable name by prefixing it with id space */ std::string generate_full_name(const std::string &name) const; /** Create a new tile operand referring to the specified tile object. */ static TileOperand create_tile_operand(ITile &tile); /** Get the reference to the tile object and the active area from the tile operand. */ static std::tuple get_tile(const TileOperand &operand); /** Create a new tensor operand from a tensor object. */ static TensorOperand create_tensor_operand(ITensor &tensor); /** Get the reference to tensor object from the tensor operand. */ static ITensor &get_tensor(const TensorOperand &operand); /** Get the values of a constant data object. */ static const std::vector> &get_values(const ConstantData &data); /** Get the data type of a constant data object. */ static DataType get_data_type(const ConstantData &data); private: int32_t _id_space{0}; int32_t _last_created_id_space{0}; }; } // namespace ckw #endif // CKW_INCLUDE_CKW_KERNELWRITER_H